山东明基环保设备有限公司

主营产品: 一体化污水处理设备,加药装置,气浮机,消毒器,厌氧反应器等

6

联系电话

15963635951

您现在的位置: 山东明基环保设备有限公司>>厌氧反应器>>IC厌氧反应器>> 邢台市厌氧反应器

公司信息

人:
李经理
话:
13002785510
机:
15963635951
真:
86-0536-8120588
址:
山东省潍坊市奎文区幸福街316号1号楼3-401
编:
261041
址:
www.sdmjhb.com
铺:
https://www.huajx.com/st52415/
给他留言
邢台市厌氧反应器
邢台市厌氧反应器
参考价 面议
具体成交价以合同协议为准
  • 型号
  • 品牌
  • 厂商性质 生产商
  • 所在地 潍坊市

更新时间:2020-11-09 14:13:31浏览次数:138

联系我们时请说明是化工机械设备网上看到的信息,谢谢!

【简单介绍】
邢台市厌氧反应器,它相似由2层UASB反应器串联而成。按功能划分,反应器由下而上共分为5个区:混合区、1厌氧区、2厌氧区、沉淀区和气液分离区。
【详细说明】

邢台市厌氧反应器

IC厌氧反应器水封罐主要由杯形罐体和进、口组成,其征在于 园底杯形罐的罐壁上部设相对的进、口,其进水口的水 平位置略于口;进水口处装式阀板,该阀板与进 水口的接触上设密封垫;下端为弧形的隔板从罐盖*的 扁孔垂直插入罐内至下部。

IC厌氧反应器的水封罐可以隔绝空气,可以维持厌氧反应器的压力,可以起阻火器的,还可以一定的沼气净化效果。

IC厌氧反应器水封罐原理如下:密闭罐中原油沉降分离后的含硫化氢天然气通过水封罐管道进入水封罐的底部,通过底部筛管分散气流后进入水域空间,含硫化氢天然气从水域底部上升后聚集在水封罐的液体上部空间,当气体不断由液体中分离出来,在上部空间聚集形成一定压力后,由水封罐部出口管线排出燃烧。当发生回火时,水域成为含硫化氢天然气流程的隔断部分,能够效的保护罐,同时天然气通过水域空间时,一部分凝液被降温分离,在水域上部形成凝析液层,减缓了阻火器的堵塞情况。

随着对的日益重视,在废水末端处理方也进行了大量的资金投入,如在造纸二部和板纸废水厌氧处理技术的足以证明。废水的厌氧处理技术以其、、污泥易于处理等优点在废水处理中正发挥着越来越大的。

UASB与IC在运行上大的差别表现在抗冲击负荷方,IC可以通过自动稀释进水,效了*反应室的进水浓度的稳定性。其次是它仅需要较短的停留时间,对可生化性的废水的确是优点。大同意因为IC,抗冲击负荷,容积负荷,投资省等许多优点于UASB的优点,是否就应该因此而放弃再选用UASB了呢?

IC缺特点尤其在污水可生化性不是太的情况下,由于水力停留时间比较短率远没UASB,增加了耗氧的负担。另外,IC由于气体,别是对进水水质不太稳定的,导致IC水量不稳定,水质也相对不稳定,时可能还会出现短暂不现象,对后序处理工艺是影响的。UASB比IC优点就是率,水质相对稳定。但IC优点还是很多的,别是对于SS进水,比UASB明显,由于IC上升流速很大,SS不会在反应器内大量积累,污泥可以保持较活性。对于毒废水也是如此!

IC运行温度的设计完和UASB一样,在调试运行上和UASB区别不大,只是在刚进水调试时尽可能采用水力负荷些,然后逐步交互提升水力、机负荷,尽可能在负荷提升过程中*反应室上升流速大于10m/小时,但大水力负荷应控制在20m/小时以下,这样即*反应室污泥床的传质效果,也避免污泥流失.冬季进水管道及反应器要保温,因为厌氧菌对温度波动敏感,对负荷波动适应要相对的多.其实IC的调试比UASB要调的多,能调试UASB的,应该调试IC没太大问题.不是因为上升流速大,会不控制而延长调试周期.IC它对进水水质的要求仅是相对稳定就行,它要求的上升流速仅是满足*反应室污泥床处于膨化状态,加大传质效果,IC的度较,你不必太担心会污泥流失,因为内部它两层三相分离,更何况*反应室产气量较大,绝大部分沼气被*反应室分离收集提升到部的气水分离气包进行气与泥水的分离.二反应室气量少泥水更易分离沉降.若接种颗粒污泥基本一个月便可达到设计负荷是没问题的,絮状污泥可能需三到五个月.

邢台市厌氧反应器

而四个反应阶段通常很慢,同时也是重要的反应过程,在前几个阶段中,废水的中物质只是形态上发生变化,COD几乎没什么,只是在四个阶段中物质变成甲烷等气体,使废水中COD大幅度下降。同时在四个阶段产生大量的碱度这与前三个阶段产生的机酸相平衡,维持废水中的PH稳定,反应的连续进行。

水解反应

水解可定义为复杂的非溶解性的聚合物被转化成的溶解性单体和二聚体的过程。水解反应针对不同的废水类差别很大,这要取决于胞外酶能否效的接触到底物。因此,大的颗粒比小颗粒底物要难降解很多,比如造纸废水、印染废水和制药废水的木质素、大分子纤维素就很难水解。

水解速度的可由以下动力学方程加以描述:

ρ=ρo/(1+Kh.T)

ρ ——可降解的非溶解性底物浓度(g/l);

ρo———非溶解性底物的初始浓度(g/l);

Kh——水解常数(d-1);

T——停留时间(d)。

一般来说,影响Kh的因素很多,很难确定一个定的方程来求解Kh,但我们可以根据一些定条件的Kh,反推导解反应器的容积和非常的反应条件。在实际工程实施中,条件的话,应针对要处理的废水作一些Kh的测试。通过对外一些报道的研究,提出在温下水解对脂肪和蛋白质的降解速率非常慢,这个时候,可以不考虑厌氧处理方式。对于生活污水来说,在温度15的情况下,Kh=0.2左右。但在水解阶段我们不需要过多的COD效果,而且在一个反应器中你很难严格的把厌氧反应的几个阶段区分开来,一旦停留时间过长,对工程就不太。如果就单独的水解反应针对生活污水来说,COD可以控制到0.1的效果就可以了。

把这些参数和给定的条件代入到水解动力学方程中,可以得到停留水解停留时间:

T=13.44h

这对于水解和后续阶段处于一个反应器中厌氧处理单元来说是一个很短的时间,在实际工程中也完可以实现。如果条件的地方我们可以适当提废水的反应温度,这样反应时间还会大大缩短。而且一般对于城市污水来说,长的排水管网和废水中本生的生物多样性,所以当废水流到废水处理场时,这个过程也在很大程度上完成,到目前为止还没看到关于水解作为生活污水厌氧反应的限速报道。

发酵酸化反应

发酵可以被定义为机化合物既作为电子受体也作为电子供体的生物降解过程,在此过程中机物被转化成以挥发性脂肪酸为主的末端产物。

酸化过程是由大量的、多样的发酵细菌来完成的,在这些细菌中大部分是专性厌氧菌,只1%是兼性厌氧菌,但正是这1%的兼性菌在反应器受到氧气的冲击时,能迅速消耗掉这些氧气,保持废水的氧化还原电位,同时也保护了产甲烷菌的运行条件。

酸化过程的底物取决于厌氧降解的条件、底物种类和参与酸化的微生物种群。对于一个稳态的反应器来说,乙酸、二氧化碳、氢气则是酸化反应的主要产物。这些都是产甲烷阶段所需要的底物。

在这个阶段产生两种重要的厌氧反应是否正常的底物就是挥发性脂肪酸(VFA)和氨氮。VFA过会使废水的PH下降,逐渐影响到产甲烷菌的正常进行,使产气量减小,同时整个反应的自然碱度也会较少,系统平衡PH的能力减弱,整个反应会形成恶性循环,使得整个反应器终失败。氨氮它起到一个平衡的,一方,它能够中和一部分VFA,使废水PH具更大的缓冲能力,同时又给生物体合成自生生长需要的营养物质,但过的氨氮会给微生物带来毒性,废水中的氨氮主要是由于蛋白质的分解带来的,的生活污水中含20-50mg/l左右的氨氮,这个范围是厌氧微生物非常理想的范围。

另外一个重要指标就是废水中氢气的浓度,以含碳17的脂肪酸降解为例:

CH3(CH2)15COO-+14H2O—> 7CH3COO-+CH3CH2COO-+7H++14H2

脂肪酸的降解都会产生大量的氢气,如果要使上述反应得以正常进行,必须在下一反应中消耗掉足够的氢气,来维持这一反应的平衡。如果废水的氢气指标过,表明废水的产甲烷反应已经受到严重抑制,需要进行修复,一般来说氢气浓度升是伴随PH指标降的,所以不难监测到废水中氢气的变化情况,但废水本身一定的缓冲能力,所以完通过PH下降来判断氢气浓度的变化一定的滞后性,所以通过监测废水中氢气浓度的变化是对整个反应器反应状态

产乙酸反应

发酵阶段的产物挥发性脂肪酸VFA在产乙酸阶段进一步降解成乙酸,其常用反应式如以下几种:

CH3CHOHCOO-+2H2O —> CH3COO-+HCO3-+H++2H2 ΔG’0=-4.2KJ/MOL

CH3CH2OH+H2O-> CH3COO-+H++2H2O ΔG’0=9.6KJ/MOL

CH3CH2CH2COO-+2H2O-> 2CH3COO-+H++2H2 ΔG’0=48.1KJ/MOL

CH3CH2COO-+3H2O-> CH3COO-+HCO3-+H++3H2 ΔG’0=76.1KJ/MOL

4CH3OH+2CO2-> 3CH3COO-+2H2O ΔG’0=-2.9KJ/MOL

2HCO3-+4H2+H+->CH3COO-+4H2O ΔG’0=-70.3KJ/MOL

从上的反应方程式可以看出,乙醇、丁酸和丙酸不会被降解,但由于后续反应中氢的消耗,使得反应能够向右进行,在一阶段,氢的平衡显得更加重要,同时后续的产甲烷过程为这一阶段的转化能量。实际上这一阶段和前的发酵阶段都是由同一类细菌完成,都在细菌体内进行,并且产物排放到水体中,界限并没清楚,在设计反应器时,没足够的理由把他们分开。

产甲烷反应

在厌氧反应中,大约70%左右的甲烷由乙酸歧化菌产生,这也是这几个阶段中遵循莫诺方程反应的阶段。

另一类产生甲烷的微生物是由氢气和二氧化碳形成的。在正常条件下,他们大约占30%左右。其中约一般的嗜氢细菌也能利用甲酸产生甲烷。主要的产甲烷过程反应:

CH3COO-+H2O->CH4+HCO3- ΔG’0=-31.0KJ/MOL

HCO3-+H++4H2->CH4+3H2O ΔG’0=-135.6KJ/MOL

4CH3OH->3CH4+CO2+2H2O ΔG’0=-312KJ/MOL

4HCOO-+2H+->CH4+CO2+2HCO3- ΔG’0=-32.9KJ/MOL

在甲烷的形成过程中,主要的中间产物是甲基辅酶M(CH3-S-CH2-SO3-)。这个过程可用以下图示所标:

在甲基辅酶M还原成甲烷的过程中,需要非常重要的甲基还原酶,其中含重要的金属离子Ni+。这对生活污水来说是比较缺乏微量金属离子,所以在生活污水的厌氧生物处理过程中补充一定的微量金属离子是非常必要的。

浓度废水反应速率的选择

以生活污水为例,一般来说影响废水厌氧反应速率的因素很多,包括反应温度、废水的毒性、原水基质浓度、原水的PH值、传质效率、营养物质的平衡、微量元素的催化等等。对于生活污水来说,影响比较大的因素反应温度、原水的基质浓度、传质效率以及微量元素的催化。因为生活污水的营养比和PH值被*为非常适合生物的生长的。在前的叙述中,已经提及了厌氧反应的前三个阶段对于生活污水来说,很快就可以完成,尤其水解阶段,不存在传质的限制,同时通常长距离的管网也给水解了足够的时间。因此我们提出的厌氧处理浓度废水设计思想中,主要考虑产甲烷过程作为限速步骤。

由于产甲烷阶段遵循莫诺方程,整个速率的确定以莫诺方程为基础。在上式中,很难把总体反应的Ks值估算出来,因为它受到的影响因素很多,对于不同类的废水差别很大。对于生活污水来说可以根据不同的单个因素影响列成很多分式莫诺方程,后各式相乘再加上修正系数,这个方程可以得出比较接近的Ks值,作为厌氧处理生活污水时的参考设计数据。

适用范围

IC厌氧反应器是一种的反应器,为三代厌氧反应器的代表类(UASB为二代厌氧反应器的代表类),与二代厌氧反应器相比,它具、机负荷、抗冲击能力更强,性能更稳定、操作管理更。当COD为10000-15000mg/1时的浓度机废水;二代UASB反应器一般容积负荷为5-8kgCOD/m3;三代AIC厌氧反应器容积负荷率可达15-30kgCOD/m3。IC厌氧反应器适用于机浓度废水,如,玉米淀粉废水、柠檬酸废水、啤酒废水、土豆加工废水、酒精废水。

明基通过主业的发展壮大,通过的不断创新,通过文化的普及渗透,通过*的不懈努力,聚合特点特点滴滴的资源与能量,创生限大的生态循环和生态和谐,回馈社会,报效,服务百姓,造福人类。关注环境保护,促进生态平衡,实现人与人之间、人与自然之间和谐友。



二维码 在线交流

扫一扫访问手机商铺
在线留言