产品展厅收藏该商铺

您好 登录 注册

当前位置:
无锡德为源自动化科技有限公司>>意大利杰佛伦GEFRAN传感器>>传感器>>意大利GEFRAN传感器M32-6-M-B35D-1-4-E

意大利GEFRAN传感器M32-6-M-B35D-1-4-E

返回列表页
  • 意大利GEFRAN传感器M32-6-M-B35D-1-4-E

  • 意大利GEFRAN传感器M32-6-M-B35D-1-4-E

  • 意大利GEFRAN传感器M32-6-M-B35D-1-4-E

  • 意大利GEFRAN传感器M32-6-M-B35D-1-4-E

  • 意大利GEFRAN传感器M32-6-M-B35D-1-4-E

收藏
举报
参考价 面议
具体成交价以合同协议为准
  • 型号
  • 品牌
  • 厂商性质 代理商
  • 所在地 无锡市

在线询价 收藏产品

更新时间:2022-10-21 16:31:29浏览次数:132

联系我们时请说明是化工机械设备网上看到的信息,谢谢!

产品简介

意大利GEFRAN传感器M32-6-M-B35D-1-4-E

2、排气温度传感器:排气度传感器用于测量压缩机顶部的排气温度,常数B值为
3、模块温度传感器:模块温度传感器用于测量变频模块(的型号是602F-3500F和传输——随着全智能集散控制系统(SmartDistributedSystem)的飞速发展,对智能单元要求具备通信功能,用通信网络以数字形式进行双向通信,这也是智能传感器关键标

详细介绍

意大利GEFRAN传感器M32-6-M-B35D-1-4-E

意大利GEFRAN传感器M32-6-M-B35D-1-4-E

温度传感器用于测量压缩机顶部的排气温度,常数B值为3950K±3%,基准电阻为90℃对应电阻5KΩ±3%。

3、模块温度传感器:模块温度传感器用于测量变频模块(IGBT或IPM)的温度,用的感温头的型号是602F-3500F,基准电阻为25℃对应电阻6KΩ±1%。几个典型温度的对应阻值分别是:-10℃→(25.897~28.623)KΩ;0℃→(16.3248~17.7164)KΩ;50℃→(2.3262~2.5153)KΩ;90℃→(0.6671~0.7565)KΩ。

温度传感器的种类很多,经常使用的有热电阻:PT100、PT1000、Cu50、Cu100;热电偶:B、E、J、K、S等。温度传感器不但种类繁多,而且组合形式多样,应根据不同的场所选用合适的产品。

测温原理:根据电阻阻值、热电偶的电势随温度不同发生有规律的变化的原理,我们可以得到所需要测量的温度值。

无线温度

无线温度传感器将控制对象的温度参数变成电信号,并对接收终端发送无线信号,对系统实行检测、调节和控制。可直接安装在一般工业热电阻、热电偶的接线盒内,与现场传感元件构成一体化结构。通常和无线中继、接收终端、通信串口、电子计算机等配套使用,这样不仅节省了补偿导线和电缆,而且减少了信号传递失真和干扰,从而获的了高精度的测量结果。

无线温度传感器广泛应用于化工、冶金、石油、电力、水处理、制药、食品等自动化行业。例如:高压电缆上的温度采集;水下等恶劣环境的温度采集;运动物体上的温度采集;不易连线通过的空间传输传感器数据;单纯为降低布线成本选用的数据采集方案;没有交流电源的工作场合的数据测量;便携式非固定场所数据测量。

智能

传感器(图10)传感器(图10)智能传感器的功能是通过模拟人的感官和大脑的协调动作,结合*以来测试技术的研究和实际经验而提出来的。是一个相对独立的智能单元,它的出现对原来硬件性能苛刻要求有所减轻,而靠软件帮助可以使传感器的性能大幅度提高。

1、信息存储和传输——随着全智能集散控制系统(SmartDistributedSystem)的飞速发展,对智能单元要求具备通信功能,用通信网络以数字形式进行双向通信,这也是智能传感器关键标志之一。智能传感器通过测试数据传输或接收指令来实现各项功能。如增益的设置、补偿参数的设置、内检参数设置、测试数据输出等。

2、自补偿和计算功能——多年来从事传感器研制的工程技术人员一直为传感器的温度漂移和输出非线性作大量的补偿工作,但都没有从根本上解决问题。而智能传感器的自补偿和计算功能为传感器的温度漂移和非线性补偿开辟了新的道路。这样,放宽传感器加工精密度要求,只要能保证传感器的重复性好,利用微处理器对测试的信号通过软件计算,采用多次拟合和差值计算方法对漂移和非线性进行补偿,从而能获得较精确的测量结果压力传感器。

3、自检、自校、自诊断功能——普通传感器需要定期检验和标定,以保证它在正常使用时足够的准确度,这些工作一般要求将传感器从使用现场拆卸送到实验室或检验部门进行。对于在线测量传感器出现异常则不能及时诊断。采用智能传感器情况则大有改观,首先自诊断功能在电源接通时进行自检,诊断测试以确定组件有*。其次根据使用时间可以在线进行校正,微处理器利用存在EPROM内的计量特性数据进行对比校对。

4、复合敏感功能——观察周围的自然现象,常见的信号有声、光、电、热、力、化学等。敏感元件测量一般通过两种方式:直接和间接的测量。而智能传感器具有复合功能,能够同时测量多种物理量和化学量,给出能够较全面反映物质运动规律的信息。

光敏

光敏传感器是较常见的传感器之一,它的种类繁多,主要有:光电管、光电倍增管、光敏电阻、光敏三极管、太阳能电池、红外线传感器、紫外线传感器、光纤式光电传感器、色彩传感器、CCD和CMOS图像传感器等。它的敏感波长在可见光波长附近,包括红外线波长和紫外线波长。光传感器不只局限于对光的探测,它还可以作为探测元件组成其他传感器,对许多非电量进行检测,只要将这些非电量转换为光信号的变化即可。光传感器是目前产量多、应用较广的传感器之一,它在自动控制和非电量电测技术引中占有非常重要的地位。较简单的光敏传感器[2]是光敏电阻,当光子冲击接合处就会产生电流。

生物

生物传感器的概念

传感器(图11)传感器(图11)生物传感器是用生物活性材料(酶、蛋白质、DNA、抗体、抗原、生物膜等)与物理化学换能器有机结合的一门交叉学科,是发展生物技术*的一种*的检测方法与监控方法,也是物质分子水平的快速、微量分析方法。各种生物传感器有以下共同的结构:包括一种或数种相关生物活性材料(生物膜)及能把生物活性表达的信号转换为电信号的物理或化学换能器(传感器),二者组合在一起,用现代微电子和自动化仪表技术进行生物信号的再加工,构成各种可以使用的生物传感器分析装置、仪器和系统。

生物传感器的原理

待测物质经扩散作用进入生物活性材料,经分子识别,发生生物学反应,产生的信息继而被相应的物理或化学换能器转变成可定量和可处理的电信号,再经二次仪表放大并输出,便可知道待测物浓度。

生物传感器的分类

按照其感受器中所采用的生命物质分类,可分为:微生物传感器、免疫传感器、组织传感器、细胞传感器、酶传感器、DNA传感器等等。

按照传感器器件检测的原理分类,可分为:热敏生物传感器、场效应管生物传感器、压电生物传感器、光学生物传感器、声波道生物传感器、酶电极生物传感器、介体生物传感器等。

按照生物敏感物质相互作用的类型分类,可分为亲和型和代谢型两种。

视觉

工作原理:

传感器(图12)传感器(图12)视觉传感器是指:具有从一整幅图像捕获光线的数发千计像素的能力,图像的清晰和细腻程度常用分辨率来衡量,以像素数量表示。

视觉传感器具有从一整幅图像捕获光线的数以千计的像素。图像的清晰和细腻程度通常用分辨率来衡量,以像素数量表示。

在捕获图像之后,视觉传感器将其与内存中存储的基准图像进行比较,以做出分析。例如,若视觉传感器被设定为辨别正确地插有八颗螺栓的机器部件,则传感器知道应该拒收只有七颗螺栓的部件,或者螺栓未对准的部件。此外,无论该机器部件位于视场中的哪个位置,无论该部件是否在360度范围内旋转,视觉传感器都能做出判断。

应用领域:

视觉传感器的低成本和易用性已吸引机器设计师和工艺工程师将其集成入各类曾经依赖人工、多个光电传感器,或根本不检验的应用。视觉传感器的工业应用包括检验、计量、测量、定向、瑕疵检测和分捡。以下只是一些应用范例:

在汽车组装厂,检验由机器人涂抹到车门边框的胶珠是否连续,是否有正确的宽度;

在瓶装厂,校验瓶盖是否正确密封、装灌液位是否正确,以及在封盖之前没有异物掉入瓶中;

在包装生产线,确保在正确的位置粘贴正确的包装标签;

在药品包装生产线,检验阿斯匹林药片的泡罩式包装中是否有破损或缺失的药片;

在金属冲压公司,以每分钟逾150片的速度检验冲压部件,比人工检验快13倍以上。

位移

传感器(图13)传感器(图13)位移传感器又称为线性传感器,把位移转换为电量的传感器。位移传感器是一种属于金属感应的线性器件,传感器的作用是把各种被测物理量转换为电量它分为电感式位移传感器,电容式位移传感器,光电式位移传感器,声波式位移传感器,霍尔式位移传感器。

在这种转换过程中有许多物理量(例如压力、流量、加速度等)常常需要先变换为位移,然后再将位移变换成电量。因此位移传感器是一类重要的基本传感器。在生产过程中,位移的测量一般分为测量实物尺寸和机械位移两种。机械位移包括线位移和角位移。按被测变量变换的形式不同,位移传感器可分为模拟式和数字式两种。模拟式又可分为物性型(如自发电式)和结构型两种。常用位移传感器以模拟式结构型居多,包括电位器式位移传感器、 电感式位移传感器、自整角机、电容式位移传感器、电涡流式位移传感器、霍尔式位移传感器等。数字式位移传感器的一个重要优点是便于将信号直接送入计算机系统。这种传感器发展迅速,应用日益广泛。

压力

压力传感器引是工业实践中较为常用的一种传感器,其广泛应用于各种工业自控环境,涉及水利水电、铁路交通、智能建筑、生产自控、航空航天、*、石化、油井、电力、船舶、机床、管道等众多行业。

声波测距离

声波测距离传感器采用声波回波测距原理,运用精确的时差测量技术,检测传感器与目标物之间的距离,采用小角度,小盲区声波传感器,具有测量准确,无接触,防水,防腐蚀,低成本等优点,可应于液位,物位检测,*的液位,料位检测方式,可保证在液面有泡沫或大的晃动,不易检测到回波的情况下有稳定的输出,应用行业:液位,物位,料位检测,工业过程控制等。

24GHz雷达

RFbeam 24GHz雷达传感器RFbeam 24GHz雷达传感器24GHz雷达传感器采用高频微波来测量物体运动速度、距离、运动方向、方位角度信息,采用平面微带天线设计,具有体积小、质量轻、灵敏度高、稳定强等特点,广泛运用于智能交通、工业控制、安防、体育运动、智能家居等行业。*2012年11月19日正式发布了《*关于发布24GHz频段短距离车载雷达设备使用频率的通知》(*无〔2012〕548号),明确提出24GHz频段短距离车载雷达设备作为车载雷达设备的规范。[3]

一体化温度

一体化温度传感器一般由测温探头(热电偶或热电阻传感器)和两线制固体电子单元组成。采用固体模块形式将测温探头直接安装在接线盒内,从而形成一体化的传感器。一体化温度传感器一般分为热电阻和热电偶型两种类型。

热电阻温度传感器是由基准单元、R/V转换单元、线性电路、反接保护、限流保护、V/I转换单元等组成。测温热电阻信号转换放大后,再由线性电路对温度与电阻的非线性关系进行补偿,经V/I转换电路后输出一个与被测温度成线性关系的4~20mA的恒流信号。

热电偶温度传感器一般由基准源、冷端补偿、放大单元、线性化处理、V/I转换、断偶处理、反接保护、限流保护等电路单元组成。它是将热电偶产生的热电势经冷端补偿放大后,再帽由线性电路消除热电势与温度的非线性误差,后放大转换为4~20mA电流输出信号。为防止热电偶测量中由于电偶断丝而使控温失效造成事故,传感器中还设有断电保护电路。当热电偶断丝或接解不良时,传感器会输出大值(28mA)以使仪表切断电源。一体化温度传感器具有结构简单、节省引线、输出信号大、抗*力强、线性好、显示仪表简单、固体模块抗震防潮、有反接保护和限流保护、工作可靠等优点。一体化温度传感器的输出为统一的 4~20mA信号;可与微机系统或其它常规仪表匹配使用。也可用户要求做成防爆型或防火型测量仪表。

液位

1、浮球式液位传感器

浮球式液位传感器由磁性浮球、测量导管、信号单元、电子单元、接线盒及安装件组成。

一般磁性浮球的比重小于0.5,可漂于液面之上并沿测量导管上下移动。导管内装有测量元件,它可以在外磁作用下将被测液位信号转换成正比于液位变化的电阻信号,并将电子单元转换成4~20mA或其它标准信号输出。该传感器为模块电路,具有耐酸、防潮、防震、防腐蚀等优点,电路内部含有恒流反馈电路和内保护电路,可使输出大电流不过28mA,因而能够可靠地保护电源并使二次仪表不被损坏。

2、浮简式液位传感器

浮筒式液位传感器是将磁性浮球改为浮筒,它是根据阿基米德浮力原理设计的。浮筒式液位传感器是利用微小的金属膜应变传感技术来测量液体的液位、界位或密度的。它在工作时可以通过现场按键来进行常规的设定操作。

3、静压或液位传感器

该传感器利用液体静压力的测量原理工作。它一般选用硅压力测压传感器将测量到的压力转换成电信号,再经放大电路放大和补偿电路补偿,后以4~20mA或0~10mA电流方式输出。

真空度

真空度传感器,采用*的硅微机械加工技术生产,以集成硅压阻力敏元件作为传感器的核心元件制成的压力变送器,由于采用硅-硅直接键合或硅-派勒克斯玻璃静电键合形成的真空参考压力腔,及一系列无应力封装技术及精密温度补偿技术,因而具有稳定性优良、精度高的突出优点,适用于各种情况下压力的测量与控制。

特点及用途

采用低量程芯片真空绝压封装,产品具有高的过载能力。芯片采用真空充注硅油隔离,不锈钢薄膜过渡传递压力,具有优良的介质兼容性,适用于对316L不锈钢*的绝大多数气液体介质真空压力的测量。真空度传染其应用于各种工业环境的低真空测量与控制[4]

电容式物位

电容式物位传感器适用于工业企业在生产过程中进行测量和控制生产过程,主要用作类导电与非导电介质的液体液位或粉粒状固体料位的远距离连续测量和指示。

电容式液位传感器由电容式传感器与电子模块电路组成,它以两线制4~20mA恒定电流输出为基型,经过转换,可以用三线或四线方式输出,输出信号形成为 1~5V、0~5V、0~10mA等标准信号。电容传感器由绝缘电极和装有测量介质的圆柱形金属容器组成。当料位上升时,因非导电物料的介电常数明显小于空气的介电常数,所以电容量随着物料高度的变化而变化。传感器的模块电路由基准源、脉宽调制、转换、恒流放大、反馈和限流等单元组成。采用脉宽调特原理进行测量的优点是频率较低,对周围元射频干扰、稳定性好、线性好、无明显温度漂移等。

锑电极酸度

锑电极酸度传感器是集 PH检测、自动清洗、电信号转换为一体的工业在线分析仪表,它是由锑电极与参考电极组成的PH值测量系统。在被测酸性溶液中,由于锑电极表面会生成三氧化二锑氧化层,这样在金属锑面与三氧化二锑之间会形成电位差。该电位差的大小取决于三所氧化二锑的浓度,该浓度与被测酸性溶液中氢离子的适度相对应。如果把锑、三氧化二锑和水溶液的适度都当作1,其电极电位就可用能斯特公式计算出来。

锑电极酸度传感器中的固体模块电路由两大部分组成。为了现场作用的安全起见,电源部分采用交流24V为二次仪表供电。这一电源除为清洗电机提供驱动电源外,还应通过电流转换单元转换成相应的直流电压,以供变送电路使用。第二部分是测量传感器电路,它把来自传感器的基准信号和PH酸度信号经放大后送给斜率调整和定位调整电路,以使信号内阻降低并可调节。将放大后的PH信号与温度被偿信号进行迭加后再差进转换电路,后输出与PH值相对应的4~20mA恒流电流信号给二次仪表以完成显示并控制PH值。

酸碱盐

酸、碱、盐浓度传感器通过测量溶液电导值来确定浓度。它可以在线连续检测工业过程中酸、碱、盐在水溶液中的浓度含量。这种传感器主要应用于锅炉给水处理、化工溶液的配制以及环保等工业生产过程。

酸、碱、盐浓度传感器的工作原理是:在一定的范围内,酸碱溶液的浓度与其电导率的大小成比例。因而,只要测出溶液电导率的大小变可得知酸碱浓度的高低。当被测溶液流入电导池时,如果忽略电极极化和分布电容,则可以等效为一个纯电阻。在有恒压交变电流流过时,其输出电流与电导率成线性关系,而电导率又与溶液中酸、碱浓度成比例关系。因此只要测出溶液电流,便可算出酸、碱、盐的浓度。

酸、碱、盐浓度传感器主要由电导池、电子模块、显示表头和壳体组成。电子模块电路则由激励电源、电导池、电导放大器、相敏整流器、解调器、温度补偿、过载保护和电流转换等单元组成。

电导

它是通过测量溶液的电导值来间接测量离子浓度的流程仪表(一体化传感器),可在线连续检测工业过程中水溶液的电导率。

由于电解质溶液与金属导体一样的电的良导体,因此电流流过电解质溶液时必有电阻作用,且符合欧姆定律。但液体的电阻温度特性与金属导体相反,具有负向温度特性。为区别于金属导体,电解质溶液的导电能力用电导(电阻的倒数)或电导率(电阻率的倒数)来表示。当两个互相绝缘的电极组成电导池时,若在其中间放置待测溶液,并通以恒压交变电流,就形成了电流回路。如果将电压大小和电极尺寸固定,则回路电流与电导率就存在一定的函数关系。这样,测了待测溶液中流过的电流,就能测出待测溶液的电导率。电导传感器的结构和电路与酸、碱、盐浓度传感器相同。[5]

7主要分类

编辑

按用途

压力敏和力敏传感器、位置传感器、液位传感器、能耗传感器、速度传感器、加速度传感器、射线辐射传感器、热敏传感器。

按原理

振动传感器、湿敏传感器、磁敏传感器、气敏传感器、真空度传感器、生物传感器等。

按输出信号

模拟传感器:将被测量的非电学量转换成模拟电信号。

数字传感器:将被测量的非电学量转换成数字输出信号(包括直接和间接转换)。

膺数字传感器:将被测量的信号量转换成频率信号或短周期信号的输出(包括直接或间接转换)。

开关传感器:当一个被测量的信号达到某个特定的阈值时,传感器相应地输出一个设定的低电平或高电平信号。

按其制造工艺

传感器(图3)传感器(图3)集成传感器是用标准的生产硅基半导体集成电路的工艺技术制造的。通常还将用于初步处理被测信号的部分电路也集成在同一芯片上。

薄膜传感器则是通过沉积在介质衬底(基板)上的,相应敏感材料的薄膜形成的。使用混合工艺时,同样可将部分电路制造在此基板上。

厚膜传感器是利用相应材料的浆料,涂覆在陶瓷基片上制成的,基片通常是Al2O3制成的,然后进行热处理,使厚膜成形。

陶瓷传感器采用标准的陶瓷工艺或其某种变种工艺(溶胶、凝胶等)生产。

完成适当的预备性操作之后,已成形的元件在高温中进行烧结。厚膜和陶瓷传感器这二种工艺之间有许多共同特性,在某些方面,可以认为厚膜工艺是陶瓷工艺的一种变型。

每种工艺技术都有自己的优点和不足。由于研究、开发和生产所需的资本投入较低,以及传感器参数的高稳定性等原因,采用陶瓷和厚膜传感器比较合理。

按测量目

物理型传感器是利用被测量物质的某些物理性质发生明显变化的特性制成的。

化学型传感器是利用能把化学物质的成分、浓度等化学量转化成电学量的敏感元件制成的。

生物型传感器是利用各种生物或生物物质的特性做成的,用以检测与识别生物体内化学成分的传感器。

按其构成

基本型传感器:是一种基本的单个变换装置。

组合型传感器:是由不同单个变换装置组合而构成的传感器。

应用型传感器:是基本型传感器或组合型传感器与其他机构组合而构成的传感器。

按作用形式

按作用形式可分为主动型和被动型传感器。

主动型传感器又有作用型和反作用型,此种传感器对被测对象能发出一定探测信号,能检测探测信号在被测对象中所产生的变化,或者由探测信号在被测对象中产生某种效应而形成信号。检测探测信号变化方式的称为作用型,检测产生响应而形成信号方式的称为反作用型。雷达与无线电频率范围探测器是作用型实例,而光声效应分析装置与激光分析器是反作用型实例。

被动型传感器只是接收被测对象本身产生的信号,如红外辐射温度计、红外摄像装置等。

8主要特性

编辑

传感器静态

传感器(图4)传感器(图4)传感器的静态特性是指对静态的输入信号,传感器的输出量与输入量之间所具有相互关系。因为这时输入量和输出量都和时间无关,所以它们之间的关系,即传感器的静态特性可用一个不含时间变量的代数方程,或以输入量作横坐标,把与其对应的输出量作纵坐标而画出的特性曲线来描述。表征传感器静态特性的主要参数有:线性度、灵敏度、迟滞、重复性、漂移等。

铝框 SPACIO

电脑锁 SDS

话音合成器 派特莱(PATLITE)/DIGITAL

光通信模块 七星科学研究所

水冷却器 小金井(KOGANEI)

操作箱/操作架 摂津金属/日东工业/德国威图(RITTAL)

激光标记 天田米亚基AMADA MIYACHI/神视(SUNX)/GRAVOTECH

热熔融设备 ITW DYNATEC

自动转矩驱动 URYU SEISAKU

油雾回收机 川崎重工/昭和电机/欧姆电机

 

其他*的产品:

荷兰BETA压力开关

丹麦C-MAC继电器             

英国BEKA显示仪   

瑞典特夫洛TAPFLO泵          

国产蠕变测量尺            

英国RGS-Electro-pneumatic电磁阀               

芬兰RAUTE PRECISION电子秤称重显示仪  

印度ROTEX电磁阀              

丹麦BRODERSEN电流表                 

加拿大Maxtri  connector连接器             

瑞典LEINE LINDE编码器   

芬兰AVS气动元件

荷兰HOUTTUIN螺杆泵

国产温控器FCD-2000

法国法雷(FERRAZ)熔断器

英国senstronics传感器

法国霸高BACO按钮开关

中国台湾JPE快速接头

英国HEPCO传动产品

西班牙INTEVA快速接头

加拿大艾莎(ELSA)预警系统器

瑞典ABB电机

法国Pneumatis普利特斯皮囊

瑞士emwb电机

法国施耐德(schneider)低压工控

英国Radiodetection雷迪探测器

奥地利Kraus&Naimer(K&N)开关(全系列)

法国高诺斯Crouzet继电器

中国台湾钟茂(SITH)快插接头

英国METROSEAL绝缘地毯

瑞士eao电器

中国台湾Honor电机

法国Sensorex传感器

中国台湾ANSON叶片泵

瑞士EAO开关

法国施耐德Schneider电气

中国台湾MOUJEN限位开关

威纶通WEINVIEW触摸屏

瑞士迪芘油墨(Teca-Print)移印设备

丹麦丹佛斯DANFOSS】OMV、OMT 、OMR 、OMS、 OMH系列马达等全系列液压产品

瑞士Selectron控制模组

英国斯迈德SMARTSCAN光幕

英国CMR控制器(231A0000P0300M12)

丹麦格兰富grundfos水泵

瑞士BUCHER布赫油泵

中国台湾凡宜FINETEK开关

法国利莱森玛Leroy-somer调压板(AVR,R450)

瑞士SAIA-BURGESS开关

瑞士宜科ELCO编码器

法国SADTEM变压器 

英国SAREL工业箱

加拿大GREYSTONE格瑞斯通温湿度传感器

波兰野牛BISON精密卡盘

瑞士格博Gprtops精密活

瑞士伊芬戈Ifanger精密微调镗刀柄

瑞士格贝尔gerber膨胀芯轴

瑞士LB微型齿轮铣刀

瑞士ZENITH泵

瑞士SCT切断,切槽刀

法国OLAER蓄能器、皮囊

英国STAFFA马达

瑞典WesterMo调制解调器

英国Matcon(麦顿)料筒

荷兰ELEKTROKOV变压器

瑞士EAO开关

英国斯迈德SMARTSCAN光幕

西班牙发格(FAGOR)光栅尺

芬兰维萨拉VAISALA仪

法国MARECHAL点触式插头

英国Headlinefilters过滤器

奥地利JCT冷凝器

瑞士AQUAMETRO燃油流量计

瑞典Scanjet Marine清仓机

瑞士huba压力变送器

西班牙utilcell(尤梯尔)称重传感器

瑞士LUCIFER(鲁西佛)泛用型电磁阀

法国LEGRIS乐可利接头

捷克aquametro燃油流量计

瑞士CONTRINEX光电开关

瑞士trafag传感器

中国台湾尼尔森(NEW SUN)气动元件

中国台湾山耐斯(SUN RISE)气动元件

中国台湾精锐APEX

法国SUNTEC油泵

英国Renishaw雷尼绍计量

瑞典ATLAS COPCO空压机

英国FFE豪迈振动开关

瑞士trafag压力开关

瑞士rotronic公司之各類溫濕度測量儀

加拿大VELAN威兰阀门

中国台湾solenoid电磁阀

中国台湾MCN明椿减速机

芬兰TRAFOX变压器,

 

瑞典JOKAB安全继电器

 

 

无锡德为源自动化科技有限公司进口产品范围:机器人技术:机器人、AGV车、 服务机器人、机器人仿真及视觉系统、相关机器、装置及零部件

 

工业自动化科技:组装及搬运系统、线性定位系统、工业影像处理系统、控制系统、PLC、SCADA、 传感器和执行器、工业用电脑、通讯、网络和现场总线系统、嵌入式系统、 测量和测试系统、工业自动化科技数据获取及辨别系统、激光技术、自动化科技服务、空压技术与设备。

 

电气系统:变压器、电池和不间断电源、伺服电机和变频器、传动、机械驱动系统、电线及电缆附件、电气控制系统用电气开关装置和设备、电工及光电部件、电力电工测试和检测设备

 

工业自动化科技信息技术及软件:工厂集成化管理软件、 工业IT软件、工业基本系统及开发工具、工厂生产软件、工业用互联网/工厂内局域网、工厂外部局域网解决方案、服务。

 

仪器仪表:调节器、敏感元件及测量装置、变送器、测试仪、计量仪、指示器、电子测量仪器、执行器及调节阀,定位器、称重装置、信号处理器、智能化仪表、分析和光学设备及仪表、实验室仪器设备。

 

仪表材料元器件及附件:系统元器件、部件及控制用附件、现场总线附件、电线、电缆、机箱、机壳、连接器、端子、过滤器、泵,阀门、光纤及机电元器件、低压电器、工业电器、开关、电源,激光与光电子设备无锡德为源自动化科技有限公司

现场控制器主单元 8M

PM802F

现场控制器主单元 16M

PM803F

Serial通信模件

FI820F

Profibus DPV1通信模件

FI830F

以太网模件

EI813F

电源模件

SA811F

冗余电源模件

SD812F

Profibus冗余连接模件

RLM01

AC800M控制器单元 16M RAM

PM861AK01

AC800M控制器单元 16M RAM(冗余控制器)

PM861AK02

AC800M控制器单元 32M RAM

PM864AK01

AC800M控制器单元 32M RAM(冗余控制器)

PM864AK02

双RS232-C通信模件

CI853K01

Profibus DP-V1通信模件

CI854AK01

Profibus DP-V1通信模件

CI801

Profibus DP-V1通信模件 可冗余

CI840A无锡德为源自动化科技有限公司

CI840安装底座(用于冗余I/O)

TU846

CI840安装底座(用于冗余I/O)

TU847

模拟输入模件 8通道

AI810

模拟输入模件 支持HART

AI815

模拟输入模件,8通道,热电阻PT100

AI830A

模拟输入模件,8通道 热电偶

AI835A

模拟输入模件,8通道  可冗余 HART

AI845

模拟输入模件

AI801

模拟输出模件 8通道

AO810V2

模拟输出模件 8通道 可冗余 HART

AO845A

模拟输出模件

AO801

数字输入模件 16通道 24V d.c

DI810

数字输入模件 16通道 24V d.c  电流源

DI814

数字输入模件 8通道 230V a.c

DI821

数字输入模件

DI801

数字输出模件 16通道 24 V d.c

DO810

数字输出模件 8通道继电器数字输出,常开

DO820

数字输出模件

DO801

紧凑型接线端子,24VDC

TU810V1

紧凑型接线端子,250V

TU811V1

扩展型接线端子,24VDC

TU830V1

扩展型接线端子,230V

TU831V1

模件总线 Modem

TB820V2

电源模件 2.5A

SD821

电源模件 5A

SD822

电源模件 10A

SD823

电源切换单元

SS822无锡德为源自动化科技有限公司现场控制器主单元 8M

PM802F

现场控制器主单元 16M

PM803F

Serial通信模件

FI820F

Profibus DPV1通信模件

FI830F

以太网模件无锡德为源自动化科技有限公司Gas Name Chemical Formula Range Sensor Part Number

Ammonia NH3 9-100 ppm MIDAS-E-NH3

Arsine AsH3 18-200 ppb MIDAS-E-ASH

Boron Trichloride BCl3 0.72-8 ppm MIDAS-E-HCL

Boron Trifluoride BF3 0.72-8 ppm MIDAS-E-HFX

Boron Trifluoride (Low Level) BF3 0.18-2 ppm MIDAS-E-HFL

Bromine Br2 0.036-0.4 ppm MIDAS-E-BR2

Carbon Dioxide CO2 0.15-2.0% MIDAS-E-CO2

Carbon Monoxide CO 9-100 ppm MIDAS-E-COX

Chlorine Cl2 0.18-2 ppm MIDAS-E-HAL

Chlorine Dioxide ClO2 0.036-0.4 ppm MIDAS-E-BR2

Diborane B2

H6 36-400 ppb MIDAS-E-B2H

Dichlorosilane H2

Cl2

Si 0.72-8 ppm MIDAS-E-HCL

Difluoromethane** CH2

F2 16-240 ppm MIDAS-E-XCF

Disilane Si2

H6 1.8-20 ppm MIDAS-E-SHX

Fluorine F2 0.36-4 ppm MIDAS-E-HAL

Germane GeH4 70-800 ppb MIDAS-E-ASH

Hexafluorobutadiene** C4

F6 3-40 ppm MIDAS-E-CFX

Hydrogen (%LEL) H2 6.5-100% LEL MIDAS-E-LEL*

Hydrogen (ppm) H2 90-1000 ppm MIDAS-E-H2X

Hydrogen Bromide HBr 0.72-8 ppm MIDAS-E-HCL

Hydrogen Chloride HCl 0.72-8 ppm MIDAS-E-HCL

Hydrogen Cyanide HCN 1.8-20 ppm MIDAS-E-HCN

Hydrogen Fluoride HF 1.05-12 ppm MIDAS-E-HFX

Hydrogen Fluoride (Low Level) HFL 0.18-2 ppm MIDAS-E-HFL

Hydrogen Sulfide H2

S 3.6-40 ppm MIDAS-E-H2S

Methane (%LEL) CH4 6.5-100% LEL MIDAS-E-LEL*

Methyl Fluoride** CH3

F 8-120 ppm MIDAS-E-XHF

Nitric Oxide NO 9-100 ppm MIDAS-E-NOX

Nitrogen Dioxide NO2 1.05-12 ppm MIDAS-E-NO2

Nitrogen Trifluoride** NF3 3.6-40 ppm MIDAS-E-HFX for 00P, XHF for NP1

Octofluorocyclopentene** C5

F8 3-40 ppm MIDAS-E-XCF

Oxygen O2 0.2-25% v/v MIDAS-E-O2X

Ozone O3 0.065-0.7 ppm MIDAS-E-O3H

Ozone (Low Level) O3 0.036-0.4 ppm MIDAS-E-O3X

Phosphine PH3 110-1200 ppb MIDAS-E-PH3

Silane SiH4 1.8-20 ppm MIDAS-E-SHX

Silane (Low Level) SiH4 0.18-2 ppm MIDAS-E-SHL

Sulfur Dioxide SO2 0.7-8 ppm MIDAS-E-SO2

Tetra Ethyl Ortho Silicate TEOS 3.6-40 ppm MIDAS-E-TEO韩线机械工程一直生产用于仪表的管件和阀门,液压,流量和控制系统,石油和天然气勘探开发,炼油厂,石化加工,造船和重工业,纸浆和造纸厂 等。 和 可能并不熟悉,但我们已经为客户服务了二十年,我们的技术足以与世界上任何其他品牌竞争。 一直致力于“客户满意度”这一单一目标,而汉勋工程已经在各个行业建立了网络,包括着名的本地(韩国)合作伙伴。 韩线机械工程一直在大力投资开发新技术和创新产品。 我们将继续为各个行业提供新的解决方案,满足各种需求。 我们的质量方针是通过持续的质量创新,满足客户的要求和相关的规则和法规,提供优质的产品。 我们有二十年为客户创造价值的历史。 我们致力于成为您好的防漏流量和控制解决方案合作伙伴。 我们将尽大努力为合作伙伴创造价值。 我们的座右铭是价值创造! 您的防漏流量和控制解决方案合作伙伴韩线机械工程!

无锡德为源自动化科技有限公司韩国S-LOK进口卡套管接头和卡套管转换接头 卡套接头易于安装、拆卸和重复安装且具有无泄漏气密性密封。后卡套的几何形状和低温渗碳处理工艺,可以提供牢固的管子抓紧。双卡套技术能够很好的抵抗振动疲劳并能承受高压和温度 额定压力 高达60000 psig/4130 bar 类型:直通、弯头、三通、四通、管帽、堵塞和转换接头、卡套 结构材料 包括316/316L、2507不锈钢和优化了强度、抗腐蚀性、焊接性和延展性的其他材料。 双卡套的机械式抓紧设计 双卡套将密封功能和对卡套管的抓紧功能分开, 每个卡套都针对其相应的功能进行了优化。 前卡套用于形成密封: 与接头本体之间的密封 卡套管外径的密封。 旋转螺母时, 后卡套将: 沿轴向推进前卡套 沿径向施加一个有效的卡套管抓紧。 *几何形状, 夹箍作用的后卡套设计 的气体密封和卡套管抓紧作用 易于进行正确的安装 可靠的复装 *的抗振动疲劳性能和卡套管支撑无锡德为源自动化科技有限公司我们支持你的梦想! 真正的是日夜努力成为好的的人。我们还想让我们的梦想在世界上实现和宝贵客户。 在任何行业 - 过程仪表/石油和天然气勘探开发 - 炼油和石化/电厂造船/半导体 - CNG车辆/ LNG终端 在任何国家 - 北美和南美 - 欧洲 - 中东和北非 - 亚洲 - 澳大利亚 有任何解决方案 - 高压/真空 - 高温/低温 - 抗冲击/抗振动 - 终身保修 - 范围内的备件可用性 您的技术创新价值创造合作伙伴是韩国韩线机械工程! 尺寸:1/16-2英寸,2~38 毫米

·压缩式双卡套接头

·滚丝结构

·可用的各种配置

·的抗振性

·良好的防漏密封

·可测量性和重新拧紧

·不锈钢,黄铜,碳钢,合金400

·CNG/NGV可用

SNV50 整体式阀帽针形阀 ·100℉(38℃)下的额定压力高达5000psi(340bar)·额定温度:-65℉(-54℃)至 450℉(232℃)·不锈钢,黄铜,合金·直线或角度模式·尺寸:S-LOK 1/8至3/4英寸。 管道螺纹1/8至1/2英寸。液压管道接头

·承插焊和螺纹型

·压力等级2000,3000,6000,9000

(符合 ANSI 和 JIS标准)

·材料

·碳钢:A105,A234,JIS G4051 S20C-S45C

·不锈钢:ASTM A182 F304,F316

JIS G4303 S304,S316咬类型管接头(DIN2353) ·根据 DIN2353标准 ·两个单环设计 ·不锈钢,碳钢和黄铜 ·公制管 O.D ·批准类型:Lloyds / DNV / ABS咬类型管接头 (JIS B2351)

·根据 JIS B2351标准

·单换设计

·不锈钢、碳钢和黄铜

·公制管 O.D 和管道 O.D仪器螺纹接头

·尺寸范围为1/8 至 2英寸管道。

·不锈钢和碳钢

·NPT,ISO/BSP 和 SAE 螺纹

·根据 ASME B31.1和B31.3

·滚制外螺纹

·外螺纹有盖保护

·为确保防泄漏和可靠系统设计的外内螺纹

SHNV100 高压针形阀

·额定压力高达10000psi(689bar)

@ 100℃(38℃)

·额定温度:

-65℉(-54℃)至450℉(232℃)

·不锈钢

·PTFE 阀杆,用于密封和延长使用寿命

·尺寸:S-LOK 1/8至1英寸。

管道螺纹1/4至3/4英寸。

咬类型管接头 (JIS B2351)

·根据 JIS B2351标准

·单换设计

·不锈钢、碳钢和黄铜

·公制管 O.D 和管道 O.D

咬类型管接头(DIN2353) ·根据 DIN2353标准 ·两个单环设计 ·不锈钢,碳钢和黄铜 ·公制管 O.D ·批准类型:Lloyds / DNV / ABS

SUNV60 整体式阀帽棒材针形阀 ·额定压力高达6000psi(413bar) @ 100℃(38℃) ·额定温度: 高 572℉(300℃),PTFE 高 1200℉(649℃),Grafoil 填料 ·不锈钢,可选合金20,合金C276 ·非旋转球形杆端 ·尺寸:S-LOK 1/8至1英寸。 管道螺纹1/8至1英寸 开关:1/4至1/2英寸。

- NEEDLE VALVES

LEAK-SBNV60 整体式阀帽针形阀

·额定压力高达6000psi(413bar)

@ 100℃(38℃)

·额定温度:

-65℉(-54℃)至450℉(232℃)

·不锈钢、合金

·尺寸:S-LOK 1/4至1/2英寸。

管道螺纹1/4至3/4英寸。SCV30 提动头单向阀 ·额定压力高达3000psi(206bar)@ 100℃(38℃) ·温度等级:-10℉(-23℃)至375℉(191℃)·不锈钢,黄铜·破裂压力:1/3psig(0.02barg)至100psig(6.89barg) ·尺寸:S-LOK 1/8至1英寸。 管道螺纹1/8至1英寸。 ·CNG/NGV 可用

- CHECK AND PLUG VALVES

- BALL VALVES

SCP30 整块单向阀

·额定压力高达3000 psi(206bar)@ 100℃(38℃)

·温度等级:-10℉(-23℃)至375℉(191℃)

·不锈钢、黄铜

·破裂压力:1/3psig(0.02barg)至50psig(3.45barg)

·尺寸:管道螺纹1/4至1/2英寸。

SBV60 高压球阀

·额定压力高达10000psi(689bar)@ 100℃(38℃)

·额定温度:

-22℉(-30℃)至265℉(130℃), PVDF Seat

-65℉(-54℃)至500℉(260℃), PEEK Seat

·不锈钢

·面板安装和锁定装置可用

·二路,三路【CNG/LNG安全阀】 [Taylor] [HAWE] [DK-LOK] [HY-LOK] [HOKE] [Circle-Seal] [LESER] [MERCER] [Swagelok] [FITOK] [Parker] [S-LOK] [HSME] [罗浮] [天正] [永一] [CIR-LOK] [REGO] [Genergant] [川力] [成都川空] [四川成都空分] [富瑞] [其它] 【CNG子站-泵阀元件】 [油泵] [换向阀] [溢流阀] [单向阀] [液压胶管] 【阀门/执行器】 [Parker] [DK-LOK] [HY-LOK] [MHA] [STAUFF] [S-LOK] [HSME] [FITOK] [Swagelok] [其它] 【快换接头/多路接头】 [多路接头] [Parker] [Snap-Tite] [Dixon] [Hansen] [ 其它接头] 【CNG/LNG加气管】 [Parker] [Tesla] [LNG加液管] 【电磁阀/仪器仪表】 [电磁阀] [变送器传感器] [压力表] [电气附件] 【枪阀/拉断阀/枪头】 [枪阀] [CNG拉断阀] [LNG拉断阀] [CNG枪头] [LNG加液枪] 【CNG/液压油过滤器】 [CNG过滤器] [油过滤器] 【装机建站管件耗材】 [Parker管接件] [DK-LOK管接件] [HY-LOK管接件] [耗材附件]【01F-CNG子站-泵阀】

[F12-060,-080,-110油泵] [换向阀] [溢流阀] [单向阀] [液压胶管]

S-LOK 型号

SU-4

SU-6

SU-8

SU-12

SU-16

SL-4

SL-6

SL-8

SUR-8-4

SUR-6-4

SUR-4-2

ST-4

ST-6

ST-8

SUB-4

SUB-6

SUB-8

SMC-4-4N

SMC-6-6N

SMC-6-4N

SMC-8-8N

SMC-8-4N

SMC-4-4G

SMC-6-6G

SMC-8-8G

SCF-4-4N

SCF-6-6N

SCF-8-8N

SLM-4-4N

SLM-6-6N

SLM-8-8N

SLF-4-4N

SLF-6-6N

SLF-8-8N

SAM-4-4N

SAM-6-6N

SAM-8-8N

SAF-4-4N

SAF-6-6N

SAF-8-8N

SCP-4

SCP-6

SCP-8

SLS-8-8U

SCW-8-8P

SP-4

SP-6

SP-8

SC-4

SC-6

SC-8

SI-6-4

SI-8-4

SN-4

SN-6

SN-8

SN-12

SN-16

SFS10-4

SFS10-6

SFS10-8

SFS10-12

SFS10-16

SUO-4

SPHS-4-4T

SEU-4

SBV1-3B-S-4T

SUNV1-S-4T

SCH1-S-2T-1/3

SRV60-MF-4N-B

SFT1-S-6M-7

SQCT1S-S-4T-DE

SQCT1B-S-4T

SM2VPS-MF-8N

SMTV1-S-2T

"SDB1FA-14BBN-R12B8N-

S6-TE-VT-FS-LD-S6"

 

 

世伟洛克

SS-400-6

SS-600-6

SS-810-6

SS-1210-6

SS-1610-6

SS-400-9

SS-600-9

SS-810-9

SS-810-6-4

SS-600-6-4

SS-400-6-2

SS-400-3

SS-600-3

SS-810-3

SS-400-61

SS-600-61

SS-810-61

SS-400-1-4

SS-600-1-6

SS-600-1-4

SS-810-1-8

SS-810-1-4

SS-400-1-4RS

SS-600-1-6RS

SS-810-1-8RS

  1. 线性度:指传感器输出量与输入量之间的实际关系曲线偏离拟合直线的程度。定义为在全量程范围内实际特性曲线与拟合直线之间的大偏差值与满量程输出值之比。
  2. 灵敏度:灵敏度是传感器静态特性的一个重要指标。其定义为输出量的增量与引起该增量的相应输入量增量之比。用S表示灵敏度。
  3. 迟滞:传感器在输入量由小到大(正行程)及输入量由大到小(反行程)变化期间其输入输出特性曲线不重合的现象成为迟滞。对于同一大小的输入信号,传感器的正反行程输出信号大小不相等,这个差值称为迟滞差值。
  4. 重复性:重复性是指传感器在输入量按同一方向作全量程连续多次变化时,所得特性曲线不*的程度。
  5. 漂移:传感器的漂移是指在输入量不变的情况下,传感器输出量随着时间变化,此现象称为漂移。产生漂移的原因有两个方面:一是传感器自身结构参数;二是周围环境(如温度、湿度等)。
  6. 分辨力:当传感器的输入从非零值缓慢增加时,在过某一增量后输出发生可观测的变化,这个输入增量称传感器的分辨力,即小输入增量。
  7. 阈值:当传感器的输入从零值开始缓慢增加时,在达到某一值后输出发生可观测的变化,这个输入值称传感器的阈值电压。

传感器动态

所谓动态特性,是指传感器在输入变化时,它的输出的特性。在实际工作中,传感器的动态特性常用它对某些标准输入信号的响应来表示。这是因为传感器对标准输入信号的响应容易用实验方法求得,并且它对标准输入信号的响应与它对任意输入信号的响应之间存在一定的关系,往往知道了前者就能推定后者。较常用的标准输入信号有阶跃信号和正弦信号两种,所以传感器的动态特性也常用阶跃响应和频率响应来表示。

线性度

通常情况下,传感器的实际静态特性输出是条曲线而非直线。在实际工作中,为使仪表具有均匀刻度的读数,常用一条拟合直线近似地代表实际的特性曲线、线性度(非线性误差)就是这个近似程度的一个性能指标。

拟合直线的选取有多种方法。如将零输入和满量程输出点相连的理论直线作为拟合直线;或将与特性曲线上各点偏差的平方和为小的理论直线作为拟合直线,此拟合直线称为小二乘法拟合直线。

灵敏度

传感器(图5)传感器(图5)灵敏度是指传感器在稳态工作情况下输出量变化△y对输入量变化△x的比值。

它是输出一输入特性曲线的斜率。如果传感器的输出和输入之间显线性关系,则灵敏度S是一个常数。否则,它将随输入量的变化而变化。

灵敏度的量纲是输出、输入量的量纲之比。例如,某位移传感器,在位移变化1mm时,输出电压变化为200mV,则其灵敏度应表示为200mV/mm。

当传感器的输出、输入量的量纲相同时,灵敏度可理解为放大倍数。

提高灵敏度,可得到较高的测量精度。但灵敏度愈高,测量范围愈窄,稳定性也往往愈差。

分辨率

分辨率是指传感器可感受到的被测量的小变化的能力。也就是说,如果输入量从某一非零值缓慢地变化。当输入变化值未过某一数值时,传感器的输出不会发生变化,即传感器对此输入量的变化是分辨不出来的。只有当输入量的变化过分辨率时,其输出才会发生变化。

通常传感器在满量程范围内各点的分辨率并不相同,因此常用满量程中能使输出量产生阶跃变化的输入量中的大变化值作为衡量分辨率的指标。上述指标若用满量程的百分比表示,则称为分辨率。分辨率与传感器的稳定性有负相相关性。

9选型原则

编辑

要进行—个具体的测量工作,首先要考虑采用何种原理的传感器,这需要分析多方面的因素之后才能确定。因为,即使是测量同一物理量,也有多种原理的传感器可供选用,哪一种原理的传感器更为合适,则需要根据被测量的特点和传感器的使用条件考虑以下一些具体问题:量程的大小;被测位置对传感器体积的要求;测量方式为接触式还是非接触式;信号的引出方法,有线或是非接触测量;传感器的来源,国产还是进口,价格能否承受,还是自行研制。[6]

在考虑上述问题之后就能确定选用何种类型的传感器,然后再考虑传感器的具体性能指标。

灵敏度的选择

通常,在传感器的线性范围内,希望传感器的灵敏度越高越好。因为只有灵敏度高时,与被测量变化对应的输出信号的值才比较大,有利于信号处理。但要注意的是,传感器的灵敏度高,与被测量无关的外界噪声也容易混入,也会被放大系统放大,影响测量精度。因此,要求传感器本身应具有较高的信噪比,尽量减少从外界引入的干扰信号。

传感器的灵敏度是有方向性的。当被测量是单向量,而且对其方向性要求较高,则应选择其它方向灵敏度小的传感器;如果被测量是多维向量,则要求传感器的交叉灵敏度越小越好。

频率响应特性

传感器的频率响应特性决定了被测量的频率范围,必须在允许频率范围内保持不失真。实际上传感器的响应总有—定延迟,希望延迟时间越短越好。

传感器的频率响应越高,可测的信号频率范围就越宽。

传感器传感器在动态测量中,应根据信号的特点(稳态、瞬态、随机等)响应特性,以免产生过大的误差。

线性范围

传感器的线形范围是指输出与输入成正比的范围。以理论上讲,在此范围内,灵敏度保持定值。传感器的线性范围越宽,则其量程越大,并且能保证一定的测量精度。在选择传感器时,当传感器的种类确定以后首先要看其量程是否满足要求。

但实际上,任何传感器都不能保证的线性,其线性度也是相对的。当所要求测量精度比较低时,在一定的范围内,可将非线性误差较小的传感器近似看作线性的,这会给测量带来*的方便。

稳定性

传感器使用一段时间后,其性能保持不变的能力称为稳定性。影响传感器*稳定性的因素除传感器本身结构外,主要是传感器的使用环境。因此,要使传感器具有良好的稳定性,传感器必须要有较强的环境适应能力。

在选择传感器之前,应对其使用环境进行调查,并根据具体的使用环境选择合适的传感器,或采取适当的措施,减小环境的影响。

传感器的稳定性有定量指标,在过使用期后,在使用前应重新进行标定,以确定传感器的性能是否发生变化。

在某些要求传感器能*使用而又不能轻易更换或标定的场合,所选用的传感器稳定性要求更严格,要能够经受住长时间的考验。

精度

精度是传感器的一个重要的性能指标,它是关系到整个测量系统测量精度的一个重要环节。传感器的精度越高,其价格越昂贵,因此,传感器的精度只要满足整个测量系统的精度要求就可以,不必选得过高。这样就可以在满足同一测量目的的诸多传感器中选择比较便宜和简单的传感器阿*空压机配件。

如果测量目的是定性分析的,选用重复精度高的传感器即可,不宜选用量值精度高的;如果是为了定量分析,必须获得精确的测量值,就需选用精度等级能满足要求的传感器。

对某些特殊使用场合,无法选到合适的传感器,则需自行设计制造传感器。自制传感器的性能应满足使用要求。[6]

2、排气温度传感器:排气温度传感器用于测量压缩机顶部的排气温度,常数B值为3950K±3%,基准电阻为90℃对应电阻5KΩ±3%。

3、模块温度传感器:模块温度传感器用于测量变频模块(IGBT或IPM)的温度,用的感温头的型号是602F-3500F,基准电阻为25℃对应电阻6KΩ±1%。几个典型温度的对应阻值分别是:-10℃→(25.897~28.623)KΩ;0℃→(16.3248~17.7164)KΩ;50℃→(2.3262~2.5153)KΩ;90℃→(0.6671~0.7565)KΩ。

温度传感器的种类很多,经常使用的有热电阻:PT100、PT1000、Cu50、Cu100;热电偶:B、E、J、K、S等。温度传感器不但种类繁多,而且组合形式多样,应根据不同的场所选用合适的产品。

测温原理:根据电阻阻值、热电偶的电势随温度不同发生有规律的变化的原理,我们可以得到所需要测量的温度值。

无线温度

无线温度传感器将控制对象的温度参数变成电信号,并对接收终端发送无线信号,对系统实行检测、调节和控制。可直接安装在一般工业热电阻、热电偶的接线盒内,与现场传感元件构成一体化结构。通常和无线中继、接收终端、通信串口、电子计算机等配套使用,这样不仅节省了补偿导线和电缆,而且减少了信号传递失真和干扰,从而获的了高精度的测量结果。

无线温度传感器广泛应用于化工、冶金、石油、电力、水处理、制药、食品等自动化行业。例如:高压电缆上的温度采集;水下等恶劣环境的温度采集;运动物体上的温度采集;不易连线通过的空间传输传感器数据;单纯为降低布线成本选用的数据采集方案;没有交流电源的工作场合的数据测量;便携式非固定场所数据测量。

智能

传感器(图10)传感器(图10)智能传感器的功能是通过模拟人的感官和大脑的协调动作,结合*以来测试技术的研究和实际经验而提出来的。是一个相对独立的智能单元,它的出现对原来硬件性能苛刻要求有所减轻,而靠软件帮助可以使传感器的性能大幅度提高。

1、信息存储和传输——随着全智能集散控制系统(SmartDistributedSystem)的飞速发展,对智能单元要求具备通信功能,用通信网络以数字形式进行双向通信,这也是智能传感器关键标志之一。智能传感器通过测试数据传输或接收指令来实现各项功能。如增益的设置、补偿参数的设置、内检参数设置、测试数据输出等。

2、自补偿和计算功能——多年来从事传感器研制的工程技术人员一直为传感器的温度漂移和输出非线性作大量的补偿工作,但都没有从根本上解决问题。而智能传感器的自补偿和计算功能为传感器的温度漂移和非线性补偿开辟了新的道路。这样,放宽传感器加工精密度要求,只要能保证传感器的重复性好,利用微处理器对测试的信号通过软件计算,采用多次拟合和差值计算方法对漂移和非线性进行补偿,从而能获得较精确的测量结果压力传感器。

3、自检、自校、自诊断功能——普通传感器需要定期检验和标定,以保证它在正常使用时足够的准确度,这些工作一般要求将传感器从使用现场拆卸送到实验室或检验部门进行。对于在线测量传感器出现异常则不能及时诊断。采用智能传感器情况则大有改观,首先自诊断功能在电源接通时进行自检,诊断测试以确定组件有*。其次根据使用时间可以在线进行校正,微处理器利用存在EPROM内的计量特性数据进行对比校对。

4、复合敏感功能——观察周围的自然现象,常见的信号有声、光、电、热、力、化学等。敏感元件测量一般通过两种方式:直接和间接的测量。而智能传感器具有复合功能,能够同时测量多种物理量和化学量,给出能够较全面反映物质运动规律的信息。

光敏

光敏传感器是较常见的传感器之一,它的种类繁多,主要有:光电管、光电倍增管、光敏电阻、光敏三极管、太阳能电池、红外线传感器、紫外线传感器、光纤式光电传感器、色彩传感器、CCD和CMOS图像传感器等。它的敏感波长在可见光波长附近,包括红外线波长和紫外线波长。光传感器不只局限于对光的探测,它还可以作为探测元件组成其他传感器,对许多非电量进行检测,只要将这些非电量转换为光信号的变化即可。光传感器是目前产量多、应用较广的传感器之一,它在自动控制和非电量电测技术引中占有非常重要的地位。较简单的光敏传感器[2]是光敏电阻,当光子冲击接合处就会产生电流。

生物

生物传感器的概念

传感器(图11)传感器(图11)生物传感器是用生物活性材料(酶、蛋白质、DNA、抗体、抗原、生物膜等)与物理化学换能器有机结合的一门交叉学科,是发展生物技术*的一种*的检测方法与监控方法,也是物质分子水平的快速、微量分析方法。各种生物传感器有以下共同的结构:包括一种或数种相关生物活性材料(生物膜)及能把生物活性表达的信号转换为电信号的物理或化学换能器(传感器),二者组合在一起,用现代微电子和自动化仪表技术进行生物信号的再加工,构成各种可以使用的生物传感器分析装置、仪器和系统。

生物传感器的原理

待测物质经扩散作用进入生物活性材料,经分子识别,发生生物学反应,产生的信息继而被相应的物理或化学换能器转变成可定量和可处理的电信号,再经二次仪表放大并输出,便可知道待测物浓度。

生物传感器的分类

按照其感受器中所采用的生命物质分类,可分为:微生物传感器、免疫传感器、组织传感器、细胞传感器、酶传感器、DNA传感器等等。

按照传感器器件检测的原理分类,可分为:热敏生物传感器、场效应管生物传感器、压电生物传感器、光学生物传感器、声波道生物传感器、酶电极生物传感器、介体生物传感器等。

按照生物敏感物质相互作用的类型分类,可分为亲和型和代谢型两种。

视觉

工作原理:

传感器(图12)传感器(图12)视觉传感器是指:具有从一整幅图像捕获光线的数发千计像素的能力,图像的清晰和细腻程度常用分辨率来衡量,以像素数量表示。

视觉传感器具有从一整幅图像捕获光线的数以千计的像素。图像的清晰和细腻程度通常用分辨率来衡量,以像素数量表示。

在捕获图像之后,视觉传感器将其与内存中存储的基准图像进行比较,以做出分析。例如,若视觉传感器被设定为辨别正确地插有八颗螺栓的机器部件,则传感器知道应该拒收只有七颗螺栓的部件,或者螺栓未对准的部件。此外,无论该机器部件位于视场中的哪个位置,无论该部件是否在360度范围内旋转,视觉传感器都能做出判断。

应用领域:

视觉传感器的低成本和易用性已吸引机器设计师和工艺工程师将其集成入各类曾经依赖人工、多个光电传感器,或根本不检验的应用。视觉传感器的工业应用包括检验、计量、测量、定向、瑕疵检测和分捡。以下只是一些应用范例:

在汽车组装厂,检验由机器人涂抹到车门边框的胶珠是否连续,是否有正确的宽度;

在瓶装厂,校验瓶盖是否正确密封、装灌液位是否正确,以及在封盖之前没有异物掉入瓶中;

在包装生产线,确保在正确的位置粘贴正确的包装标签;

在药品包装生产线,检验阿斯匹林药片的泡罩式包装中是否有破损或缺失的药片;

在金属冲压公司,以每分钟逾150片的速度检验冲压部件,比人工检验快13倍以上。

位移

传感器(图13)传感器(图13)位移传感器又称为线性传感器,把位移转换为电量的传感器。位移传感器是一种属于金属感应的线性器件,传感器的作用是把各种被测物理量转换为电量它分为电感式位移传感器,电容式位移传感器,光电式位移传感器,声波式位移传感器,霍尔式位移传感器。

在这种转换过程中有许多物理量(例如压力、流量、加速度等)常常需要先变换为位移,然后再将位移变换成电量。因此位移传感器是一类重要的基本传感器。在生产过程中,位移的测量一般分为测量实物尺寸和机械位移两种。机械位移包括线位移和角位移。按被测变量变换的形式不同,位移传感器可分为模拟式和数字式两种。模拟式又可分为物性型(如自发电式)和结构型两种。常用位移传感器以模拟式结构型居多,包括电位器式位移传感器、 电感式位移传感器、自整角机、电容式位移传感器、电涡流式位移传感器、霍尔式位移传感器等。数字式位移传感器的一个重要优点是便于将信号直接送入计算机系统。这种传感器发展迅速,应用日益广泛。

压力

压力传感器引是工业实践中较为常用的一种传感器,其广泛应用于各种工业自控环境,涉及水利水电、铁路交通、智能建筑、生产自控、航空航天、*、石化、油井、电力、船舶、机床、管道等众多行业。

声波测距离

声波测距离传感器采用声波回波测距原理,运用精确的时差测量技术,检测传感器与目标物之间的距离,采用小角度,小盲区声波传感器,具有测量准确,无接触,防水,防腐蚀,低成本等优点,可应于液位,物位检测,*的液位,料位检测方式,可保证在液面有泡沫或大的晃动,不易检测到回波的情况下有稳定的输出,应用行业:液位,物位,料位检测,工业过程控制等。

24GHz雷达

RFbeam 24GHz雷达传感器RFbeam 24GHz雷达传感器24GHz雷达传感器采用高频微波来测量物体运动速度、距离、运动方向、方位角度信息,采用平面微带天线设计,具有体积小、质量轻、灵敏度高、稳定强等特点,广泛运用于智能交通、工业控制、安防、体育运动、智能家居等行业。*2012年11月19日正式发布了《*关于发布24GHz频段短距离车载雷达设备使用频率的通知》(*无〔2012〕548号),明确提出24GHz频段短距离车载雷达设备作为车载雷达设备的规范。[3]

一体化温度

一体化温度传感器一般由测温探头(热电偶或热电阻传感器)和两线制固体电子单元组成。采用固体模块形式将测温探头直接安装在接线盒内,从而形成一体化的传感器。一体化温度传感器一般分为热电阻和热电偶型两种类型。

热电阻温度传感器是由基准单元、R/V转换单元、线性电路、反接保护、限流保护、V/I转换单元等组成。测温热电阻信号转换放大后,再由线性电路对温度与电阻的非线性关系进行补偿,经V/I转换电路后输出一个与被测温度成线性关系的4~20mA的恒流信号。

热电偶温度传感器一般由基准源、冷端补偿、放大单元、线性化处理、V/I转换、断偶处理、反接保护、限流保护等电路单元组成。它是将热电偶产生的热电势经冷端补偿放大后,再帽由线性电路消除热电势与温度的非线性误差,后放大转换为4~20mA电流输出信号。为防止热电偶测量中由于电偶断丝而使控温失效造成事故,传感器中还设有断电保护电路。当热电偶断丝或接解不良时,传感器会输出大值(28mA)以使仪表切断电源。一体化温度传感器具有结构简单、节省引线、输出信号大、抗*力强、线性好、显示仪表简单、固体模块抗震防潮、有反接保护和限流保护、工作可靠等优点。一体化温度传感器的输出为统一的 4~20mA信号;可与微机系统或其它常规仪表匹配使用。也可用户要求做成防爆型或防火型测量仪表。

液位

1、浮球式液位传感器

浮球式液位传感器由磁性浮球、测量导管、信号单元、电子单元、接线盒及安装件组成。

一般磁性浮球的比重小于0.5,可漂于液面之上并沿测量导管上下移动。导管内装有测量元件,它可以在外磁作用下将被测液位信号转换成正比于液位变化的电阻信号,并将电子单元转换成4~20mA或其它标准信号输出。该传感器为模块电路,具有耐酸、防潮、防震、防腐蚀等优点,电路内部含有恒流反馈电路和内保护电路,可使输出大电流不过28mA,因而能够可靠地保护电源并使二次仪表不被损坏。

2、浮简式液位传感器

浮筒式液位传感器是将磁性浮球改为浮筒,它是根据阿基米德浮力原理设计的。浮筒式液位传感器是利用微小的金属膜应变传感技术来测量液体的液位、界位或密度的。它在工作时可以通过现场按键来进行常规的设定操作。

3、静压或液位传感器

该传感器利用液体静压力的测量原理工作。它一般选用硅压力测压传感器将测量到的压力转换成电信号,再经放大电路放大和补偿电路补偿,后以4~20mA或0~10mA电流方式输出。

真空度

真空度传感器,采用*的硅微机械加工技术生产,以集成硅压阻力敏元件作为传感器的核心元件制成的压力变送器,由于采用硅-硅直接键合或硅-派勒克斯玻璃静电键合形成的真空参考压力腔,及一系列无应力封装技术及精密温度补偿技术,因而具有稳定性优良、精度高的突出优点,适用于各种情况下压力的测量与控制。

特点及用途

采用低量程芯片真空绝压封装,产品具有高的过载能力。芯片采用真空充注硅油隔离,不锈钢薄膜过渡传递压力,具有优良的介质兼容性,适用于对316L不锈钢*的绝大多数气液体介质真空压力的测量。真空度传染其应用于各种工业环境的低真空测量与控制[4]

电容式物位

电容式物位传感器适用于工业企业在生产过程中进行测量和控制生产过程,主要用作类导电与非导电介质的液体液位或粉粒状固体料位的远距离连续测量和指示。

电容式液位传感器由电容式传感器与电子模块电路组成,它以两线制4~20mA恒定电流输出为基型,经过转换,可以用三线或四线方式输出,输出信号形成为 1~5V、0~5V、0~10mA等标准信号。电容传感器由绝缘电极和装有测量介质的圆柱形金属容器组成。当料位上升时,因非导电物料的介电常数明显小于空气的介电常数,所以电容量随着物料高度的变化而变化。传感器的模块电路由基准源、脉宽调制、转换、恒流放大、反馈和限流等单元组成。采用脉宽调特原理进行测量的优点是频率较低,对周围元射频干扰、稳定性好、线性好、无明显温度漂移等。

锑电极酸度

锑电极酸度传感器是集 PH检测、自动清洗、电信号转换为一体的工业在线分析仪表,它是由锑电极与参考电极组成的PH值测量系统。在被测酸性溶液中,由于锑电极表面会生成三氧化二锑氧化层,这样在金属锑面与三氧化二锑之间会形成电位差。该电位差的大小取决于三所氧化二锑的浓度,该浓度与被测酸性溶液中氢离子的适度相对应。如果把锑、三氧化二锑和水溶液的适度都当作1,其电极电位就可用能斯特公式计算出来。

锑电极酸度传感器中的固体模块电路由两大部分组成。为了现场作用的安全起见,电源部分采用交流24V为二次仪表供电。这一电源除为清洗电机提供驱动电源外,还应通过电流转换单元转换成相应的直流电压,以供变送电路使用。第二部分是测量传感器电路,它把来自传感器的基准信号和PH酸度信号经放大后送给斜率调整和定位调整电路,以使信号内阻降低并可调节。将放大后的PH信号与温度被偿信号进行迭加后再差进转换电路,后输出与PH值相对应的4~20mA恒流电流信号给二次仪表以完成显示并控制PH值。

酸碱盐

酸、碱、盐浓度传感器通过测量溶液电导值来确定浓度。它可以在线连续检测工业过程中酸、碱、盐在水溶液中的浓度含量。这种传感器主要应用于锅炉给水处理、化工溶液的配制以及环保等工业生产过程。

酸、碱、盐浓度传感器的工作原理是:在一定的范围内,酸碱溶液的浓度与其电导率的大小成比例。因而,只要测出溶液电导率的大小变可得知酸碱浓度的高低。当被测溶液流入电导池时,如果忽略电极极化和分布电容,则可以等效为一个纯电阻。在有恒压交变电流流过时,其输出电流与电导率成线性关系,而电导率又与溶液中酸、碱浓度成比例关系。因此只要测出溶液电流,便可算出酸、碱、盐的浓度。

酸、碱、盐浓度传感器主要由电导池、电子模块、显示表头和壳体组成。电子模块电路则由激励电源、电导池、电导放大器、相敏整流器、解调器、温度补偿、过载保护和电流转换等单元组成。

电导

它是通过测量溶液的电导值来间接测量离子浓度的流程仪表(一体化传感器),可在线连续检测工业过程中水溶液的电导率。

由于电解质溶液与金属导体一样的电的良导体,因此电流流过电解质溶液时必有电阻作用,且符合欧姆定律。但液体的电阻温度特性与金属导体相反,具有负向温度特性。为区别于金属导体,电解质溶液的导电能力用电导(电阻的倒数)或电导率(电阻率的倒数)来表示。当两个互相绝缘的电极组成电导池时,若在其中间放置待测溶液,并通以恒压交变电流,就形成了电流回路。如果将电压大小和电极尺寸固定,则回路电流与电导率就存在一定的函数关系。这样,测了待测溶液中流过的电流,就能测出待测溶液的电导率。电导传感器的结构和电路与酸、碱、盐浓度传感器相同。[5]

7主要分类

编辑

按用途

压力敏和力敏传感器、位置传感器、液位传感器、能耗传感器、速度传感器、加速度传感器、射线辐射传感器、热敏传感器。

按原理

振动传感器、湿敏传感器、磁敏传感器、气敏传感器、真空度传感器、生物传感器等。

按输出信号

模拟传感器:将被测量的非电学量转换成模拟电信号。

数字传感器:将被测量的非电学量转换成数字输出信号(包括直接和间接转换)。

膺数字传感器:将被测量的信号量转换成频率信号或短周期信号的输出(包括直接或间接转换)。

开关传感器:当一个被测量的信号达到某个特定的阈值时,传感器相应地输出一个设定的低电平或高电平信号。

按其制造工艺

传感器(图3)传感器(图3)集成传感器是用标准的生产硅基半导体集成电路的工艺技术制造的。通常还将用于初步处理被测信号的部分电路也集成在同一芯片上。

薄膜传感器则是通过沉积在介质衬底(基板)上的,相应敏感材料的薄膜形成的。使用混合工艺时,同样可将部分电路制造在此基板上。

厚膜传感器是利用相应材料的浆料,涂覆在陶瓷基片上制成的,基片通常是Al2O3制成的,然后进行热处理,使厚膜成形。

陶瓷传感器采用标准的陶瓷工艺或其某种变种工艺(溶胶、凝胶等)生产。

完成适当的预备性操作之后,已成形的元件在高温中进行烧结。厚膜和陶瓷传感器这二种工艺之间有许多共同特性,在某些方面,可以认为厚膜工艺是陶瓷工艺的一种变型。

每种工艺技术都有自己的优点和不足。由于研究、开发和生产所需的资本投入较低,以及传感器参数的高稳定性等原因,采用陶瓷和厚膜传感器比较合理。

按测量目

物理型传感器是利用被测量物质的某些物理性质发生明显变化的特性制成的。

化学型传感器是利用能把化学物质的成分、浓度等化学量转化成电学量的敏感元件制成的。

生物型传感器是利用各种生物或生物物质的特性做成的,用以检测与识别生物体内化学成分的传感器。

按其构成

基本型传感器:是一种基本的单个变换装置。

组合型传感器:是由不同单个变换装置组合而构成的传感器。

应用型传感器:是基本型传感器或组合型传感器与其他机构组合而构成的传感器。

按作用形式

按作用形式可分为主动型和被动型传感器。

主动型传感器又有作用型和反作用型,此种传感器对被测对象能发出一定探测信号,能检测探测信号在被测对象中所产生的变化,或者由探测信号在被测对象中产生某种效应而形成信号。检测探测信号变化方式的称为作用型,检测产生响应而形成信号方式的称为反作用型。雷达与无线电频率范围探测器是作用型实例,而光声效应分析装置与激光分析器是反作用型实例。

被动型传感器只是接收被测对象本身产生的信号,如红外辐射温度计、红外摄像装置等。

8主要特性

编辑

传感器静态

传感器(图4)传感器(图4)传感器的静态特性是指对静态的输入信号,传感器的输出量与输入量之间所具有相互关系。因为这时输入量和输出量都和时间无关,所以它们之间的关系,即传感器的静态特性可用一个不含时间变量的代数方程,或以输入量作横坐标,把与其对应的输出量作纵坐标而画出的特性曲线来描述。表征传感器静态特性的主要参数有:线性度、灵敏度、迟滞、重复性、漂移等。

  1. 线性度:指传感器输出量与输入量之间的实际关系曲线偏离拟合直线的程度。定义为在全量程范围内实际特性曲线与拟合直线之间的大偏差值与满量程输出值之比。
  2. 灵敏度:灵敏度是传感器静态特性的一个重要指标。其定义为输出量的增量与引起该增量的相应输入量增量之比。用S表示灵敏度。
  3. 迟滞:传感器在输入量由小到大(正行程)及输入量由大到小(反行程)变化期间其输入输出特性曲线不重合的现象成为迟滞。对于同一大小的输入信号,传感器的正反行程输出信号大小不相等,这个差值称为迟滞差值。
  4. 重复性:重复性是指传感器在输入量按同一方向作全量程连续多次变化时,所得特性曲线不*的程度。
  5. 漂移:传感器的漂移是指在输入量不变的情况下,传感器输出量随着时间变化,此现象称为漂移。产生漂移的原因有两个方面:一是传感器自身结构参数;二是周围环境(如温度、湿度等)。
  6. 分辨力:当传感器的输入从非零值缓慢增加时,在过某一增量后输出发生可观测的变化,这个输入增量称传感器的分辨力,即小输入增量。
  7. 阈值:当传感器的输入从零值开始缓慢增加时,在达到某一值后输出发生可观测的变化,这个输入值称传感器的阈值电压。

传感器动态

所谓动态特性,是指传感器在输入变化时,它的输出的特性。在实际工作中,传感器的动态特性常用它对某些标准输入信号的响应来表示。这是因为传感器对标准输入信号的响应容易用实验方法求得,并且它对标准输入信号的响应与它对任意输入信号的响应之间存在一定的关系,往往知道了前者就能推定后者。较常用的标准输入信号有阶跃信号和正弦信号两种,所以传感器的动态特性也常用阶跃响应和频率响应来表示。

线性度

通常情况下,传感器的实际静态特性输出是条曲线而非直线。在实际工作中,为使仪表具有均匀刻度的读数,常用一条拟合直线近似地代表实际的特性曲线、线性度(非线性误差)就是这个近似程度的一个性能指标。

拟合直线的选取有多种方法。如将零输入和满量程输出点相连的理论直线作为拟合直线;或将与特性曲线上各点偏差的平方和为小的理论直线作为拟合直线,此拟合直线称为小二乘法拟合直线。

灵敏度

传感器(图5)传感器(图5)灵敏度是指传感器在稳态工作情况下输出量变化△y对输入量变化△x的比值。

它是输出一输入特性曲线的斜率。如果传感器的输出和输入之间显线性关系,则灵敏度S是一个常数。否则,它将随输入量的变化而变化。

灵敏度的量纲是输出、输入量的量纲之比。例如,某位移传感器,在位移变化1mm时,输出电压变化为200mV,则其灵敏度应表示为200mV/mm。

当传感器的输出、输入量的量纲相同时,灵敏度可理解为放大倍数。

提高灵敏度,可得到较高的测量精度。但灵敏度愈高,测量范围愈窄,稳定性也往往愈差。

分辨率

分辨率是指传感器可感受到的被测量的小变化的能力。也就是说,如果输入量从某一非零值缓慢地变化。当输入变化值未过某一数值时,传感器的输出不会发生变化,即传感器对此输入量的变化是分辨不出来的。只有当输入量的变化过分辨率时,其输出才会发生变化。

通常传感器在满量程范围内各点的分辨率并不相同,因此常用满量程中能使输出量产生阶跃变化的输入量中的大变化值作为衡量分辨率的指标。上述指标若用满量程的百分比表示,则称为分辨率。分辨率与传感器的稳定性有负相相关性。

9选型原则

编辑

要进行—个具体的测量工作,首先要考虑采用何种原理的传感器,这需要分析多方面的因素之后才能确定。因为,即使是测量同一物理量,也有多种原理的传感器可供选用,哪一种原理的传感器更为合适,则需要根据被测量的特点和传感器的使用条件考虑以下一些具体问题:量程的大小;被测位置对传感器体积的要求;测量方式为接触式还是非接触式;信号的引出方法,有线或是非接触测量;传感器的来源,国产还是进口,价格能否承受,还是自行研制。[6]

在考虑上述问题之后就能确定选用何种类型的传感器,然后再考虑传感器的具体性能指标。

灵敏度的选择

通常,在传感器的线性范围内,希望传感器的灵敏度越高越好。因为只有灵敏度高时,与被测量变化对应的输出信号的值才比较大,有利于信号处理。但要注意的是,传感器的灵敏度高,与被测量无关的外界噪声也容易混入,也会被放大系统放大,影响测量精度。因此,要求传感器本身应具有较高的信噪比,尽量减少从外界引入的干扰信号。

传感器的灵敏度是有方向性的。当被测量是单向量,而且对其方向性要求较高,则应选择其它方向灵敏度小的传感器;如果被测量是多维向量,则要求传感器的交叉灵敏度越小越好。

频率响应特性

传感器的频率响应特性决定了被测量的频率范围,必须在允许频率范围内保持不失真。实际上传感器的响应总有—定延迟,希望延迟时间越短越好。

传感器的频率响应越高,可测的信号频率范围就越宽。

传感器传感器在动态测量中,应根据信号的特点(稳态、瞬态、随机等)响应特性,以免产生过大的误差。

线性范围

传感器的线形范围是指输出与输入成正比的范围。以理论上讲,在此范围内,灵敏度保持定值。传感器的线性范围越宽,则其量程越大,并且能保证一定的测量精度。在选择传感器时,当传感器的种类确定以后首先要看其量程是否满足要求。

但实际上,任何传感器都不能保证的线性,其线性度也是相对的。当所要求测量精度比较低时,在一定的范围内,可将非线性误差较小的传感器近似看作线性的,这会给测量带来*的方便。

稳定性

传感器使用一段时间后,其性能保持不变的能力称为稳定性。影响传感器*稳定性的因素除传感器本身结构外,主要是传感器的使用环境。因此,要使传感器具有良好的稳定性,传感器必须要有较强的环境适应能力。

在选择传感器之前,应对其使用环境进行调查,并根据具体的使用环境选择合适的传感器,或采取适当的措施,减小环境的影响。

传感器的稳定性有定量指标,在过使用期后,在使用前应重新进行标定,以确定传感器的性能是否发生变化。

在某些要求传感器能*使用而又不能轻易更换或标定的场合,所选用的传感器稳定性要求更严格,要能够经受住长时间的考验。

精度

精度是传感器的一个重要的性能指标,它是关系到整个测量系统测量精度的一个重要环节。传感器的精度越高,其价格越昂贵,因此,传感器的精度只要满足整个测量系统的精度要求就可以,不必选得过高。这样就可以在满足同一测量目的的诸多传感器中选择比较便宜和简单的传感器阿*空压机配件。

如果测量目的是定性分析的,选用重复精度高的传感器即可,不宜选用量值精度高的;如果是为了定量分析,必须获得精确的测量值,就需选用精度等级能满足要求的传感器。

对某些特殊使用场合,无法选到合适的传感器,则需自行设计制造传感器。自制传感器的性能应满足使用要求。[6]

 

收藏该商铺

登录 后再收藏

提示

您的留言已提交成功!我们将在第一时间回复您~
二维码 意见反馈

扫一扫访问手机商铺
在线留言