产品展厅收藏该商铺

您好 登录 注册

当前位置:
无锡德为源自动化科技有限公司>>意大利杰弗伦GEFRAN>>TR1-A-1-B-5-A-F 015X000X0意大利GEFRAN热电偶

意大利GEFRAN热电偶

返回列表页
  • 意大利GEFRAN热电偶

  • 意大利GEFRAN热电偶

  • 意大利GEFRAN热电偶

  • 意大利GEFRAN热电偶

  • 意大利GEFRAN热电偶

收藏
举报
参考价 面议
具体成交价以合同协议为准
  • 型号 TR1-A-1-B-5-A-F 015X000X0
  • 品牌
  • 厂商性质 代理商
  • 所在地 无锡市

在线询价 收藏产品

更新时间:2022-10-21 16:31:29浏览次数:127

联系我们时请说明是化工机械设备网上看到的信息,谢谢!

产品简介

意大利GEFRAN热电偶TR1-A-1-B-5-A-F 015X000X0
热电偶(thermocouple)是温度测量仪表中常用的测温元件,它直接测量温度,并把温度信号转换成热电动势信号,通过电气仪表(二次仪表)转换成被测介质的温度。各种热电偶的外形常因需要而极不相同,但是它们的基本结构却大致相同,通常由热电极、绝缘套保护管和接线盒等主要部分组成,通常和显示仪表、记录仪表及电子调节器配套使用。

详细介绍

意大利GEFRAN热电偶TR1-A-1-B-5-A-F 015X000X0

意大利GEFRAN热电偶TR1-A-1-B-5-A-F 015X000X0

热电偶(thermocouple)是温度测量仪表中常用的测温元件,它直接测量温度,并把温度信号转换成热电动势信号,通过电气仪表(二次仪表)转换成被测介质的温度。各种热电偶的外形常因需要而极不相同,但是它们的基本结构却大致相同,通常由热电极、绝缘套保护管和接线盒等主要部分组成,通常和显示仪表、记录仪表电子调节器配套使用。热电偶(thermocouple)是温度测量仪表中常用的测温元件,它直接测量温度,并把温度信号转换成热电动势信号,通过电气仪表(二次仪表)转换成被测介质的温度。各种热电偶的外形常因需要而极不相同,但是它们的基本结构却大致相同,通常由热电极、绝缘套保护管和接线盒等主要部分组成,通常和显示仪表、记录仪表电子调节器配套使用。

 

在工业生产过程中,温度是需要测量和控制的重要参数之一。在温度测量中,热电偶的应用极为广泛,它具有结构简单、制造方便、测量范围广、精度高、惯性小和输出信号便于远传等许多优点。另外,由于热电偶是一种有源传感器,测量时不需外加电源,使用十分方便,所以常被用作测量炉子、管道内的气体或液体的温度及固体的表面温度[1]

2工作原理

编辑

当有两种不同的导体或半导体A和B组成一个回路,其两端相互连接时,只要两结点处的温度不同,一端温度为T,称为工作端或热端,另一端温度为T0 ,称为自由端(也称参考端)或冷端,回路中将产生一个电动势,该电动势的方向和大小与导体的材料及两接点的温度有关。这种现象称为“热电效应”,两种导体组成的回路称为“热电偶”,这两种导体称为“热电极”,产生的电动势则称为“热电动势”[1]

热电动势由两部分电动势组成,一部分是两种导体的接触电动势,另一部分是单一导体的温差电动势。

热电偶回路中热电动势的大小,只与组成热电偶的导体材料和两接点的温度有关,而与热电偶的形状尺寸无关。当热电偶两电极材料固定后,热电动势便是两接点温度t和t0。的函数差[1]。即

公式公式

这一关系式在实际测温中得到了广泛应用。因为冷端t0恒定,热电偶产生的热电动势只随热端(测量端)温度的变化而变化,即一定的热电动势对应着一定的温度。我们只要用测量热电动势的方法就可达到测温的目的[1]

热电偶(图1)热电偶(图1)热电偶热电偶热电偶测温的基本原理是两种不同成份的材质导体组成闭合回路,当两端存在温度梯度时,回路中就会有电流通过,此时两端之间就存在电动势——热电动势,这就是所谓的塞贝克效应(Seebeck effect)。两种不同成份的均质导体为热电极,温度较高的一端为工作端,温度较低的一端为自由端,自由端通常处于某个恒定的温度下。根据热电动势与温度的函数关系,制成热电偶分度表;分度表是自由端温度在0℃时的条件下得到的,不同的热电偶具有不同的分度表。

在热电偶回路中接入第三种金属材料时,只要该材料两个接点的温度相同,热电偶所产生的热电势将保持不变,即不受第三种金属接入回路中的影响。因此,在热电偶测温时,可接入测量仪表,测得热电动势后,即可知道被测介质的温度。热电偶测量温度时要求其冷端(测量端为热端,通过引线与测量电路连接的端称为冷端)的温度保持不变,其热电势大小才与测量温度呈一定的比例关系。若测量时,冷端的(环境)温度变化,将严重影响测量的准确性。在冷端采取一定措施补偿由于冷端温度变化造成的影响称为热电偶的冷端补偿正常。与测量仪表连接用补偿导线。

热电偶冷端补偿计算方法:

从毫伏到温度:测量冷端温度,换算为对应毫伏值,与热电偶的毫伏值相加,换算出温度;

从温度到毫伏:测量出实际温度与冷端温度,分别换算为毫伏值,相减後得出毫伏值,即得温度。

3测温条件

编辑

热电偶高清图片热电偶高清图片是一种感温元件,是一种一次仪表,热电偶直接丈量温度。由2种不同成分材质的导体组成的闭合回路,由于材质不同,不同的电子密度产生电子扩散,稳定均衡后就产生 了电势。当两端存在梯度温度时,回路中就生,产生热电动势,温度差越大,电流就会越大。测得热电动势之后即可晓得温度值。热电偶实际上是一种能量转换器,可将热能转换成电能。

热电偶的技术优势:热电偶测温范围宽,性能比拟稳定;丈量精度高,热电偶与被测对象直接接触,不受中间介质的影响;热响应时间快,热电偶对温度变化反响灵活;丈量范围 大,热电偶从-40~+ 1600℃ 均可连续测温;热电偶性能牢靠, 机械强度好。运用寿命长,装置便当。

电偶必需是由两种性质不同但契合一定要求的导体(或半导体)材料构成回路。热电偶丈量端和参考端之间必需有温差。

将两种不同资料的导体或半导体A和B焊接起来,构成一个闭合回路。当导体A和B的两个执着点1和2之间存在温差时,两者之间便产生电动势,因此在回路中构成一个大小的电流,这 种现象称为热电效应。热电偶就是应用这一效应来工作的。

4主要特点

编辑

热电偶(图2)热电偶(图2)1、装配简单,更换方便;

2、压簧式感温元件,抗震性能好;

3、测量精度高;

4、测量范围大(-200℃~1300℃,特殊情况下-270℃~2800℃);

5、热响应时间快;

6、机械强度高,耐压性能好;

7、耐高温可达2800度;

8、使用寿命长。

5结构要求

编辑

热电偶(图3)热电偶(图3)热电偶的结构形式为了保证热电偶可靠、稳定地工作,对它的结构要求如下:

1、组成热电偶的两个热电极的焊接必须牢固;

2、两个热电极彼此之间应很好地绝缘,以防短路;

3、补偿导线与热电偶自由端的连接要方便可靠;

4、保护套管应能保证热电极与有害介质充分隔离。

6工作原理

编辑

热电偶(图4)热电偶(图4)两种不同成份的导体(称为热电偶丝材或热电极)两端接合成回路,当两个接合点的温度不同时,在回路中就会产生电动势,这种现象称为热电效应,而这种电动势称为热电势。热电偶就是利用这种原理进行温度测量的,其中,直接用作测量介质温度的一端叫做工作端(也称为测量端),另一端叫做冷端(也称为补偿端);冷端与显示仪表或配套仪表连接,显示仪表会指出热电偶所产生的热电势。

热电偶实际上是一种能量转换器,它将热能转换为电能,用所产生的热电势测量温度,对于热电偶的热电势,应注意如下几个问题:

1、热电偶的热电势是热电偶工作端的两端温度函数的差,而不是热电偶冷端与工作端,两端温度差的函数;

2、热电偶所产生的热电势的大小,当热电偶的材料是均匀时,与热电偶的长度和直径无关,只与热电偶材料的成份和两端的温差有关;

3、当热电偶的两个热电偶丝材料成份确定后,热电偶热电势的大小,只与热电偶的温度差有关;若热电偶冷端的温度保持一定,这进热电偶的热电势仅是工作端温度的单值函数。将两种不同材料的导体或半导体A和B焊接起来,构成一个闭合回路,如图所示。当导体A和B的两个执着点1和2之间存在温差时,两者之间便产生电动势,因而在回路中形成一个大小的电流。热电偶就是利用这一效应来工作的。

7常见种类

编辑

常用热电偶可分为标准热电偶和非标准热电偶两大类。所谓标准热电偶是指国家标准规定了其热电势与温度的关系、允许误差、并有统一的标准分度表的热电偶,它有与其配套的显示仪表可供选用。非标准化热电偶在使用范围或数量级上均不及标准化热电偶,一般也没有统一的分度表,主要用于某些特殊场合的测量。标准化热电偶中国从1988年1月1日起,热电偶和热电阻全部按IEC标准生产,并S、B、E、K、R、J、T七种标准化热电偶为中国统一设计型热电偶。

热电偶分度号热电极材料
 正极负极
S铂铑 10纯铂
R铂铑 13纯铂
B铂铑 30铂铑 6
K镍铬镍硅
T纯铜铜镍
J铜镍
N镍铬硅镍硅
E镍铬铜镍

从理论上讲,任何两种不同导体(或半导体)都可以配制成热电偶,但是作为实用的测温元件,对它的要求是多方面的。为了保证工程技术中的可靠性,以及足够的测量精度,并不是所有材料都能组成热电偶,一般对热电偶的电极材料,基本要求是:

1、在测温范围内,热电性质稳定,不随时间而变化,有足够的物理化学稳定性,不易氧化或腐蚀;

2、电阻温度系数小,导电率高,比热小;

3、测温中产生热电势要大,并且热电势与温度之间呈线性或接近线性的单值函数关系;

4、材料复制性好,机械强度高,制造工艺简单,价格便宜。

8安装方法

编辑

在生产中由于被测对象不同,环境条件不同,测量要求不同,和热电阻的安装方法及采取的措施也不同,需要考虑的问题比较多,但原则上可以从测温的准确性、安全性、维修方便三个方面来考虑。

为避免测温元件损坏,应保证其有足够的机械强度,为保护感温元件不受磨损应加保护屏或保护管等,为确保安全、可靠,测温元件的安装方法应视具体情况(如待测介质的温度、压力、测温元件的长度及其安装位置、形式等)而定。下面仅举几例以引起注意:

凡安装承受压力的测温元件,都必须保证其密封性。高温下工作的热电偶,为防止保护管在高温下产生变形,一般应垂直安装,若必须水平安装则不宜过长,并用支架保护热电偶。若测温元件安装于介质流速较大的管道中,则其应倾斜安装。为防止测温元件受到过大的冲蚀,安装在管道的弯曲处。当介质压力过10MPa时,必须在测量元件上加保护外套。热电偶/热电阻的安装部位还应考虑其拆装、维修、校验的足够空间和场地,具有较长保护管的热电偶、热电阻应能方便地拆装。

9测量方法

编辑

的热响应时间比较复杂,不同的试验条件会有不同的测量结果,这是因为它受热电偶与周围介质的换热率影响,换热率高,则热响应时间就短。为了使热电偶产品的热响应 时间具有可比性,国家标准规定:热响应时间应在水流试验装置上进行。该装置的水流速度应保持0.4±0.05m/s,初始温度在5-45℃的范围内,温度阶跃值为40-50℃。在试验 过程中,水的温度变化应不大于温度阶跃值的±1%。被试热电偶的置入深度为150mm或设计的置入深度(选其中较小值并在试验报告中注明)。

由于该装置比较复杂,目前只有极少数单位有这套设备,故国家标准中规定允许生产厂与用户协商,可采用其他试验方法,但所给数据必须注明试验条件。

由于B型热电偶在室温附近热电势很小,热响应时间不容易测出,因此国家标准规定可采用同规格的S型热电偶的热电极组件替换其自身的热电极组件,然后进行试验。

试验时应记录 热电偶 的输出变化至相当于温度阶跃变化50%的时间T0.5,必要时可记录变化10%的热响应时间T0.1和变化90%的热响应时间T0.9。所记录的热响应时间,应是同一 试验至少三次测试结果的平均值,每次测量结果对于平均值的偏离应在±10%以内。此外,形成温度阶跃变化所需的时间不应过被测试 热电偶 的T0.5的十分之一。记录仪器或仪 表的响应时间不应过被试热电偶的T0.5的十分之一。

10主要分类

编辑

热电偶(图5)热电偶(图5)1、按固定装置型式分类

热电偶作为主要测温手段,用途十分广泛,因而对固定装置和技术性能有多种要求,因此热电偶的固定装置分为六种:无固定装置式、螺纹式、固定法兰式、活动法兰式、活动法兰角尺形式、锥形保护管式六种。

2、按装配及结构方式分类

根据热电偶的性能结构方式可分为:可拆卸式热电偶、隔爆式热电偶、铠装热电偶和压弹簧固定式热电偶等特殊用途的热电偶。

11安装要求

编辑

热电偶(图6)热电偶(图6)对热电偶与热电阻的安装,应注意有利于测温准确,安全可考及维修方便,而且不影响设备运行和生产操作.要满足以上要求,在选择对热电偶和热电阻的安装部位和插入深度时要注意以下几点:

1、为了使热电偶和热电阻的测量端与被测介质之间有充分的热交换,应合理选择测点位置,尽量避免在阀门,弯头及管道和设备的死角附近装设热电偶或热电阻。

2、带有保护套管的热电偶和热电阻有传热和散热损失,为了减少测量误差,热电偶和热电阻应该有足够的插入深度:

热电偶(图7)热电偶(图7)(1)对于测量管道中心流体温度的热电偶,一般都应将其测量端插入到管道中心处(垂直安装或倾斜安装).如被测流体的管道直径是200毫米,那热电偶或热电阻插入深度应选择100毫米;

(2)对于高温高压和高速流体的温度测量(如主蒸汽温度),为了减小保护套对流体的阻力和防止保护套在流体作用下发生断裂,可采取保护管浅插方式或采用热套式热电偶,浅插式的热电偶保护套管,其插入主蒸汽管道的深度应不小于75mm;热套式热电偶的标准插入深度为100mm;

(3)假如需要测量是烟道内烟气的温度,尽管烟道直径为4m,热电偶或热电阻插入深度1 m即可;

(4)当测量原件插入深度过1m时,应尽可能垂直安装,或加装支撑架和保护套管。

12正确使用

编辑

热电偶(图8)热电偶(图8)正确使用热电偶不但可以准确得到温度的数值,保证产品合格,而且还可节省热电偶的材料消耗,既节省资金又能保证产品质量。安装不正确,热导率和时间滞后等误差,它们是热电偶在使用中的主要误差。

1、安装不当引入的误差

如热电偶安装的位置及插入深度不能反映炉膛的真实温度等,换句话说,热电偶不应装在太靠近门和加热的地方,插入的深度至少应为保护管直径的8~10倍;热电偶的保护套管与壁间的间隔未填绝热物质致使炉内热溢出或冷空气侵入,因此热电偶保护管和炉壁孔之间的空隙应用耐火泥或石棉绳等绝热物质堵塞以免冷热空气对流而影响测温的准确性;热电偶冷端太靠近炉体使温度过100℃;热电偶的安装应尽可能避开强磁场和强电场,所以不应把热电偶和动力电缆线装在同一根导管内以免引入干扰造成误差;热电偶不能安装在被测介质很少流动的区域内,当用热电偶测量管内气体温度时,必须使热电偶逆着流速方向安装,而且充分与气体接触。

2、绝缘变差而引入的误差

如热电偶绝缘了,保护管和拉线板污垢或盐渣过多致使热电偶极间与炉壁间绝缘不良,在高温下更为严重,这不仅会引起热电势的损耗而且还会引入干扰,由此引起的误差有时可达上百度。

3、热惰性引入的误差

热电偶(图9)热电偶(图9)由于热电偶的热惰性使仪表的指示值落后于被测温度的变化,在进行快速测量时这种影响尤为突出。所以应尽可能采用热电极较细、保护管直径较小的热电偶。测温环境许可时,甚至可将保护管取去。由于存在测量滞后,用热电偶检测出的温度波动的振幅较炉温波动的振幅小。测量滞后越大,热电偶波动的振幅就越小,与实际炉温的差别也就越大。当用时间常数大的热电偶测温或控温时,仪表显示的温度虽然波动很小,但实际炉温的波动可能很大。为了准确的测量温度,应当选择时间常数小的热电偶。时间常数与传热系数成反比,与热电偶热端的直径、材料的密度及比热成正比,如要减小时间常数,除增加传热系数以外,有效的办法是尽量减小热端的尺寸。使用中,通常采用导热性能好的材料,管壁薄、内径小的保护套管。在较精密的温度测量中,使用无保护套管的裸丝热电偶,但热电偶容易损坏,应及时校正及更换。

4、热阻误差

高温时,如保护管上有一层煤灰,尘埃附在上面,则热阻增加,阻碍热的传导,这时温度示值比被测温度的真值低。因此,应保持热电偶保护管外部的清洁,以减小误差。

13故障处理

编辑

热电偶输入产生故障判别法:

热电偶(图10)热电偶(图10)按照仪表接线图进行正确接线通电后,仪表先是显示仪表的热电偶分度号,接着显示仪表量程范围,再测仪表下排的数码管显示设定温度,仪表上排数码管显示测量温度。若仪表上排数码管显示不是发热体的温度,而显示“OVER”、“0000”或“000”等状况,说明仪表输入部位产生故障,应作如下试验:

1)把热电偶从仪表热电偶输入端拆下,再用任何一根导线把仪表热电偶输入端短路。通电时,仪表上排数码管显示值约为室温时,说明热电偶内部连线开路,应更换同类型热电偶。若还是以上所说的状况,说明仪表在运输过程中,仪表的输入端被损坏,要调换仪表。

2)把上述故障仪表的热电偶拆去,换用旁边运行正常的同种分度号仪表上接入的热电偶,通电后,原故障仪表上排数码管显示发热体温度时,说明热电偶连线开路,更换同类型热电偶。

热电偶(图11)热电偶(图11)3)把有故障的热电偶从仪表上拆下来,用万用表放在测量欧姆(R)*1档,用万用表两表棒去测热电偶两端,若万用表上显示的电阻值很大,说明热电偶内部连接开路,更换同类型热电偶。否则有一定阻值,说明仪表输入端有问题,应更换仪表。

4)按照仪表接线图接线正确,若仪表通电后,仪表上排数码管显示有负值等现象,说明接入仪表的热电偶“+”与“—”接错而造成的。只要重新调换一下即可。

5)接线正确仪表在运行时,仪表上排数码管显示的温度与实际测量的温度相差40度~70度。甚至相差更大,说明仪表的分度号与热电偶的分度号搞错。按热电偶分度号B、S、K、E等热电偶的温度与毫伏(MV)值的对应关系来看,同样温度的情况下,产生的毫伏值(MV)B分度号小,S分度号次小,K分度号较大,E分度号大,按照此原理来判别。

常见故障分析及处理:

故障现象可能原因处理方法
热电势比实际值小(显示仪表指示值偏低)热电极短路如潮湿所致,则进行干燥;如绝缘子损坏,则更换绝缘子
热电偶的接线柱处积灰,造成短路清扫积灰
补偿导线线间短路找出短路点,加强绝缘或更换补偿导线
热电偶热电极变质在长度允许的发问下,剪去变质段重新焊接,或更换新热电偶
补偿导线与热电偶极性接反重新接正确
补偿导线与热电偶不配套更换相配套的补偿导线
热电偶安装位置不录或插入深度不符合要求重新按规定安装
热电偶冷端温度补偿不符合要求调整冷端补偿器
热电偶与显示仪表不配套更换热电偶或显示仪表使之相配套
热电势比实际值大(显示仪表指示值偏高)显示仪表与热电偶不配套更换热电偶使之相配套
热电偶与补偿导线不配套更换补偿导线使之相配套
有直流干扰信号进入排除直流干扰
热电势输出不稳定热电偶接线柱与热电极接触不良将接线柱螺丝拧紧
热电偶测量线路绝缘破损,引起断续短路或接地找出故障点,修复绝缘
热电偶安装不牢或外部震动紧固热电偶,消除震动或采取减震措施
热电极将断未断修复或更换热电偶
外界干扰(交流漏电,电磁场感应等)查出干扰源,采用屏蔽措施
热电偶热电势误差大热电极变质更换热电极
热电偶安装位置不当改变安装位置
保护管表面积灰清除积灰

14温度补偿

编辑

热电偶(图12)热电偶(图12)由于热电偶的材料一般都比较贵重(特别是采用贵金属时),而测温点到仪表的距离都很远,为了节省热电偶材料,降低成本,通常采用补偿导线把热电偶的冷端(自由端)延伸到温度比较稳定的控制室内,连接到仪表端子上。必须指出,热电偶补偿导线的作用只起延伸热电极,使热电偶的冷端移动到控制室的仪表端子上,它本身并不能消除冷端温度变化对测温的影响,不起补偿作用。因此,还需采用其他修正方法来补偿冷端温度t0≠0℃时对测温的影响。在使用热电偶补偿导线时必须注意型号相配,极性不能接错,补偿导线与热电偶连接端的温度差不能过100℃。

15主要优点

编辑

1、测量精度高。因直接与被测对象接触,不受中间介质的影响。

2、测量范围广。常用的热电偶从零下50度——1600度均可连续测量,某些特殊热电偶低可测到-269度(如金铁镍铬),可达2800度(如钨、铼)。

3、构造简单,使用方便。热电偶通常是由两种不同的金属丝组成,而且不受大小和开头的限制,外有保护套管,用起来非常方便。

16选择方法

编辑

热电偶(图13)热电偶(图13)热电偶是两种不同的导体连接在一起形成的,当测量及参考连接点分别处于不同温度上时即产生出所谓的热电磁力(EMF)。连接点用途测量连接点是处于被测温度上的热电偶连接点部分。参考连接点则是保持在一已知温度上,或温度变化能自动补偿的热电偶连接点部分。

在常规工业应用中,热电偶元件一般端接在接头上;但参考连接点却很少位于接头上,而是利用适当的热电偶延伸线来转接到温度比较稳定的被控环境中。连接点类型接壳式热电偶连接点与探针壁物理连接(焊接),这能实现很好的热传输——即从外部通过探针壁将热量传至热电偶连接点。建议用接壳式热电偶来测量静态或流动腐蚀性气体与液体的温度,以及一些高压应用。在绝缘式热电偶中,热电偶连接点与探针壁分开并由一种软性粉末包围。虽然绝缘式热电偶的响应速度比接壳式热电偶的响应速度要慢,但它能提供电绝缘。建议使用绝缘式热电偶来测量腐蚀性环境,可理想地通过护套屏蔽来将热电偶与周围环境*电绝缘。露端式热电偶允许连接点顶端深入到周围环境中,这种类型可提供的响应时间,但*于在非腐蚀、非危险及非加压应用中使用。响应时间以时间常数来表示,时间常数定义为传感器在被控环境中在初始值和终值之间改变63.2%所需的时间。露端式热电偶具有快的响应速度,而且探针护套直径越小,则响应速度就越快,但其大允许测量温度也就越低。延伸线热电偶延伸线是一对具有与其相连热电偶相同温度电磁频率特征的线。当连接合适时,延伸线将参考连接点从热电偶转接至线的另一端,而这一端通常位于被控环境中。

选择热电偶选择热电偶时需考虑下列因素:

1、被测温度范围;

2、所需响应时间;

3、连接点类型;

4、热电偶或护套材料的抗化学腐蚀能力;

5、抗磨损或抗振动能力;

6、安装及限制要求等。

在工业生产过程中,温度是需要测量和控制的重要参数之一。在温度测量中,热电偶的应用极为广泛,它具有结构简单、制造方便、测量范围广、精度高、惯性小和输出信号便于远传等许多优点。另外,由于热电偶是一种有源传感器,测量时不需外加电源,使用十分方便,所以常被用作测量炉子、管道内的气体或液体的温度及固体的表面温度[1]

2工作原理

编辑

当有两种不同的导体或半导体A和B组成一个回路,其两端相互连接时,只要两结点处的温度不同,一端温度为T,称为工作端或热端,另一端温度为T0 ,称为自由端(也称参考端)或冷端,回路中将产生一个电动势,该电动势的方向和大小与导体的材料及两接点的温度有关。这种现象称为“热电效应”,两种导体组成的回路称为“热电偶”,这两种导体称为“热电极”,产生的电动势则称为“热电动势”[1]

热电动势由两部分电动势组成,一部分是两种导体的接触电动势,另一部分是单一导体的温差电动势。

热电偶回路中热电动势的大小,只与组成热电偶的导体材料和两接点的温度有关,而与热电偶的形状尺寸无关。当热电偶两电极材料固定后,热电动势便是两接点温度t和t0。的函数差[1]。即

公式公式

这一关系式在实际测温中得到了广泛应用。因为冷端t0恒定,热电偶产生的热电动势只随热端(测量端)温度的变化而变化,即一定的热电动势对应着一定的温度。我们只要用测量热电动势的方法就可达到测温的目的[1]

热电偶(图1)热电偶(图1)热电偶热电偶热电偶测温的基本原理是两种不同成份的材质导体组成闭合回路,当两端存在温度梯度时,回路中就会有电流通过,此时两端之间就存在电动势——热电动势,这就是所谓的塞贝克效应(Seebeck effect)。两种不同成份的均质导体为热电极,温度较高的一端为工作端,温度较低的一端为自由端,自由端通常处于某个恒定的温度下。根据热电动势与温度的函数关系,制成热电偶分度表;分度表是自由端温度在0℃时的条件下得到的,不同的热电偶具有不同的分度表。

在热电偶回路中接入第三种金属材料时,只要该材料两个接点的温度相同,热电偶所产生的热电势将保持不变,即不受第三种金属接入回路中的影响。因此,在热电偶测温时,可接入测量仪表,测得热电动势后,即可知道被测介质的温度。热电偶测量温度时要求其冷端(测量端为热端,通过引线与测量电路连接的端称为冷端)的温度保持不变,其热电势大小才与测量温度呈一定的比例关系。若测量时,冷端的(环境)温度变化,将严重影响测量的准确性。在冷端采取一定措施补偿由于冷端温度变化造成的影响称为热电偶的冷端补偿正常。与测量仪表连接用补偿导线。

热电偶冷端补偿计算方法:

从毫伏到温度:测量冷端温度,换算为对应毫伏值,与热电偶的毫伏值相加,换算出温度;

从温度到毫伏:测量出实际温度与冷端温度,分别换算为毫伏值,相减後得出毫伏值,即得温度。

3测温条件

编辑

热电偶高清图片热电偶高清图片是一种感温元件,是一种一次仪表,热电偶直接丈量温度。由2种不同成分材质的导体组成的闭合回路,由于材质不同,不同的电子密度产生电子扩散,稳定均衡后就产生 了电势。当两端存在梯度温度时,回路中就会,产生热电动势,温度差越大,电流就会越大。测得热电动势之后即可晓得温度值。热电偶实际上是一种能量转换器,可将热能转换成电能。

热电偶的技术优势:热电偶测温范围宽,性能比拟稳定;丈量精度高,热电偶与被测对象直接接触,不受中间介质的影响;热响应时间快,热电偶对温度变化反响灵活;丈量范围 大,热电偶从-40~+ 1600℃ 均可连续测温;热电偶性能牢靠, 机械强度好。运用寿命长,装置便当。

电偶必需是由两种性质不同但契合一定要求的导体(或半导体)材料构成回路。热电偶丈量端和参考端之间必需有温差。

将两种不同资料的导体或半导体A和B焊接起来,构成一个闭合回路。当导体A和B的两个执着点1和2之间存在温差时,两者之间便产生电动势,因此在回路中构成一个大小的电流,这 种现象称为热电效应。热电偶就是应用这一效应来工作的。

4主要特点

编辑

热电偶(图2)热电偶(图2)1、装配简单,更换方便;

2、压簧式感温元件,抗震性能好;

3、测量精度高;

4、测量范围大(-200℃~1300℃,特殊情况下-270℃~2800℃);

5、热响应时间快;

6、机械强度高,耐压性能好;

7、耐高温可达2800度;

8、使用寿命长。

5结构要求

编辑

热电偶(图3)热电偶(图3)热电偶的结构形式为了保证热电偶可靠、稳定地工作,对它的结构要求如下:

1、组成热电偶的两个热电极的焊接必须牢固;

2、两个热电极彼此之间应很好地绝缘,以防短路;

3、补偿导线与热电偶自由端的连接要方便可靠;

4、保护套管应能保证热电极与有害介质充分隔离。

6工作原理

编辑

热电偶(图4)热电偶(图4)两种不同成份的导体(称为热电偶丝材或热电极)两端接合成回路,当两个接合点的温度不同时,在回路中就会产生电动势,这种现象称为热电效应,而这种电动势称为热电势。热电偶就是利用这种原理进行温度测量的,其中,直接用作测量介质温度的一端叫做工作端(也称为测量端),另一端叫做冷端(也称为补偿端);冷端与显示仪表或配套仪表连接,显示仪表会指出热电偶所产生的热电势。

热电偶实际上是一种能量转换器,它将热能转换为电能,用所产生的热电势测量温度,对于热电偶的热电势,应注意如下几个问题:

1、热电偶的热电势是热电偶工作端的两端温度函数的差,而不是热电偶冷端与工作端,两端温度差的函数;

2、热电偶所产生的热电势的大小,当热电偶的材料是均匀时,与热电偶的长度和直径无关,只与热电偶材料的成份和两端的温差有关;

3、当热电偶的两个热电偶丝材料成份确定后,热电偶热电势的大小,只与热电偶的温度差有关;若热电偶冷端的温度保持一定,这进热电偶的热电势仅是工作端温度的单值函数。将两种不同材料的导体或半导体A和B焊接起来,构成一个闭合回路,如图所示。当导体A和B的两个执着点1和2之间存在温差时,两者之间便产生电动势,因而在回路中形成一个大小的电流。热电偶就是利用这一效应来工作的。

7常见种类

编辑

常用热电偶可分为标准热电偶和非标准热电偶两大类。所谓标准热电偶是指国家标准规定了其热电势与温度的关系、允许误差、并有统一的标准分度表的热电偶,它有与其配套的显示仪表可供选用。非标准化热电偶在使用范围或数量级上均不及标准化热电偶,一般也没有统一的分度表,主要用于某些特殊场合的测量。标准化热电偶中国从1988年1月1日起,热电偶和热电阻全部按IEC标准生产,并S、B、E、K、R、J、T七种标准化热电偶为中国统一设计型热电偶。

热电偶分度号热电极材料
 正极负极
S铂铑 10纯铂
R铂铑 13纯铂
B铂铑 30铂铑 6
K镍铬镍硅
T纯铜铜镍
J铜镍
N镍铬硅镍硅
E镍铬铜镍

从理论上讲,任何两种不同导体(或半导体)都可以配制成热电偶,但是作为实用的测温元件,对它的要求是多方面的。为了保证工程技术中的可靠性,以及足够的测量精度,并不是所有材料都能组成热电偶,一般对热电偶的电极材料,基本要求是:

1、在测温范围内,热电性质稳定,不随时间而变化,有足够的物理化学稳定性,不易氧化或腐蚀;

2、电阻温度系数小,导电率高,比热小;

3、测温中产生热电势要大,并且热电势与温度之间呈线性或接近线性的单值函数关系;

4、材料复制性好,机械强度高,制造工艺简单,价格便宜。

8安装方法

编辑

在生产中由于被测对象不同,环境条件不同,测量要求不同,和热电阻的安装方法及采取的措施也不同,需要考虑的问题比较多,但原则上可以从测温的准确性、安全性、维修方便三个方面来考虑。

为避免测温元件损坏,应保证其有足够的机械强度,为保护感温元件不受磨损应加保护屏或保护管等,为确保安全、可靠,测温元件的安装方法应视具体情况(如待测介质的温度、压力、测温元件的长度及其安装位置、形式等)而定。下面仅举几例以引起注意:

凡安装承受压力的测温元件,都必须保证其密封性。高温下工作的热电偶,为防止保护管在高温下产生变形,一般应垂直安装,若必须水平安装则不宜过长,并用支架保护热电偶。若测温元件安装于介质流速较大的管道中,则其应倾斜安装。为防止测温元件受到过大的冲蚀,安装在管道的弯曲处。当介质压力过10MPa时,必须在测量元件上加保护外套。热电偶/热电阻的安装部位还应考虑其拆装、维修、校验的足够空间和场地,具有较长保护管的热电偶、热电阻应能方便地拆装。

9测量方法

编辑

的热响应时间比较复杂,不同的试验条件会有不同的测量结果,这是因为它受热电偶与周围介质的换热率影响,换热率高,则热响应时间就短。为了使热电偶产品的热响应 时间具有可比性,国家标准规定:热响应时间应在水流试验装置上进行。该装置的水流速度应保持0.4±0.05m/s,初始温度在5-45℃的范围内,温度阶跃值为40-50℃。在试验 过程中,水的温度变化应不大于温度阶跃值的±1%。被试热电偶的置入深度为150mm或设计的置入深度(选其中较小值并在试验报告中注明)。

由于该装置比较复杂,目前只有极少数单位有这套设备,故国家标准中规定允许生产厂与用户协商,可采用其他试验方法,但所给数据必须注明试验条件。

由于B型热电偶在室温附近热电势很小,热响应时间不容易测出,因此国家标准规定可采用同规格的S型热电偶的热电极组件替换其自身的热电极组件,然后进行试验。

试验时应记录 热电偶 的输出变化至相当于温度阶跃变化50%的时间T0.5,必要时可记录变化10%的热响应时间T0.1和变化90%的热响应时间T0.9。所记录的热响应时间,应是同一 试验至少三次测试结果的平均值,每次测量结果对于平均值的偏离应在±10%以内。此外,形成温度阶跃变化所需的时间不应过被测试 热电偶 的T0.5的十分之一。记录仪器或仪 表的响应时间不应过被试热电偶的T0.5的十分之一。

10主要分类

编辑

热电偶(图5)热电偶(图5)1、按固定装置型式分类

热电偶作为主要测温手段,用途十分广泛,因而对固定装置和技术性能有多种要求,因此热电偶的固定装置分为六种:无固定装置式、螺纹式、固定法兰式、活动法兰式、活动法兰角尺形式、锥形保护管式六种。

2、按装配及结构方式分类

根据热电偶的性能结构方式可分为:可拆卸式热电偶、隔爆式热电偶、铠装热电偶和压弹簧固定式热电偶等特殊用途的热电偶。

11安装要求

编辑

热电偶(图6)热电偶(图6)对热电偶与热电阻的安装,应注意有利于测温准确,安全可考及维修方便,而且不影响设备运行和生产操作.要满足以上要求,在选择对热电偶和热电阻的安装部位和插入深度时要注意以下几点:

1、为了使热电偶和热电阻的测量端与被测介质之间有充分的热交换,应合理选择测点位置,尽量避免在阀门,弯头及管道和设备的死角附近装设热电偶或热电阻。

2、带有保护套管的热电偶和热电阻有传热和散热损失,为了减少测量误差,热电偶和热电阻应该有足够的插入深度:

热电偶(图7)热电偶(图7)(1)对于测量管道中心流体温度的热电偶,一般都应将其测量端插入到管道中心处(垂直安装或倾斜安装).如被测流体的管道直径是200毫米,那热电偶或热电阻插入深度应选择100毫米;

(2)对于高温高压和高速流体的温度测量(如主蒸汽温度),为了减小保护套对流体的阻力和防止保护套在流体作用下发生断裂,可采取保护管浅插方式或采用热套式热电偶,浅插式的热电偶保护套管,其插入主蒸汽管道的深度应不小于75mm;热套式热电偶的标准插入深度为100mm;

(3)假如需要测量是烟道内烟气的温度,尽管烟道直径为4m,热电偶或热电阻插入深度1 m即可;

(4)当测量原件插入深度过1m时,应尽可能垂直安装,或加装支撑架和保护套管。

12正确使用

编辑

热电偶(图8)热电偶(图8)正确使用热电偶不但可以准确得到温度的数值,保证产品合格,而且还可节省热电偶的材料消耗,既节省资金又能保证产品质量。安装不正确,热导率和时间滞后等误差,它们是热电偶在使用中的主要误差。

1、安装不当引入的误差

如热电偶安装的位置及插入深度不能反映炉膛的真实温度等,换句话说,热电偶不应装在太靠近门和加热的地方,插入的深度至少应为保护管直径的8~10倍;热电偶的保护套管与壁间的间隔未填绝热物质致使炉内热溢出或冷空气侵入,因此热电偶保护管和炉壁孔之间的空隙应用耐火泥或石棉绳等绝热物质堵塞以免冷热空气对流而影响测温的准确性;热电偶冷端太靠近炉体使温度过100℃;热电偶的安装应尽可能避开强磁场和强电场,所以不应把热电偶和动力电缆线装在同一根导管内以免引入干扰造成误差;热电偶不能安装在被测介质很少流动的区域内,当用热电偶测量管内气体温度时,必须使热电偶逆着流速方向安装,而且充分与气体接触。

2、绝缘变差而引入的误差

如热电偶绝缘了,保护管和拉线板污垢或盐渣过多致使热电偶极间与炉壁间绝缘不良,在高温下更为严重,这不仅会引起热电势的损耗而且还会引入干扰,由此引起的误差有时可达上百度。

3、热惰性引入的误差

热电偶(图9)热电偶(图9)由于热电偶的热惰性使仪表的指示值落后于被测温度的变化,在进行快速测量时这种影响尤为突出。所以应尽可能采用热电极较细、保护管直径较小的热电偶。测温环境许可时,甚至可将保护管取去。由于存在测量滞后,用热电偶检测出的温度波动的振幅较炉温波动的振幅小。测量滞后越大,热电偶波动的振幅就越小,与实际炉温的差别也就越大。当用时间常数大的热电偶测温或控温时,仪表显示的温度虽然波动很小,但实际炉温的波动可能很大。为了准确的测量温度,应当选择时间常数小的热电偶。时间常数与传热系数成反比,与热电偶热端的直径、材料的密度及比热成正比,如要减小时间常数,除增加传热系数以外,有效的办法是尽量减小热端的尺寸。使用中,通常采用导热性能好的材料,管壁薄、内径小的保护套管。在较精密的温度测量中,使用无保护套管的裸丝热电偶,但热电偶容易损坏,应及时校正及更换。

4、热阻误差

高温时,如保护管上有一层煤灰,尘埃附在上面,则热阻增加,阻碍热的传导,这时温度示值比被测温度的真值低。因此,应保持热电偶保护管外部的清洁,以减小误差。

13故障处理

编辑

热电偶输入产生故障判别法:

热电偶(图10)热电偶(图10)按照仪表接线图进行正确接线通电后,仪表先是显示仪表的热电偶分度号,接着显示仪表量程范围,再测仪表下排的数码管显示设定温度,仪表上排数码管显示测量温度。若仪表上排数码管显示不是发热体的温度,而显示“OVER”、“0000”或“000”等状况,说明仪表输入部位产生故障,应作如下试验:

1)把热电偶从仪表热电偶输入端拆下,再用任何一根导线把仪表热电偶输入端短路。通电时,仪表上排数码管显示值约为室温时,说明热电偶内部连线开路,应更换同类型热电偶。若还是以上所说的状况,说明仪表在运输过程中,仪表的输入端被损坏,要调换仪表。

2)把上述故障仪表的热电偶拆去,换用旁边运行正常的同种分度号仪表上接入的热电偶,通电后,原故障仪表上排数码管显示发热体温度时,说明热电偶连线开路,更换同类型热电偶。

热电偶(图11)热电偶(图11)3)把有故障的热电偶从仪表上拆下来,用万用表放在测量欧姆(R)*1档,用万用表两表棒去测热电偶两端,若万用表上显示的电阻值很大,说明热电偶内部连接开路,更换同类型热电偶。否则有一定阻值,说明仪表输入端有问题,应更换仪表。

4)按照仪表接线图接线正确,若仪表通电后,仪表上排数码管显示有负值等现象,说明接入仪表的热电偶“+”与“—”接错而造成的。只要重新调换一下即可。

5)接线正确仪表在运行时,仪表上排数码管显示的温度与实际测量的温度相差40度~70度。甚至相差更大,说明仪表的分度号与热电偶的分度号搞错。按热电偶分度号B、S、K、E等热电偶的温度与毫伏(MV)值的对应关系来看,同样温度的情况下,产生的毫伏值(MV)B分度号小,S分度号次小,K分度号较大,E分度号大,按照此原理来判别。

常见故障分析及处理:

故障现象可能原因处理方法
热电势比实际值小(显示仪表指示值偏低)热电极短路如潮湿所致,则进行干燥;如绝缘子损坏,则更换绝缘子
热电偶的接线柱处积灰,造成短路清扫积灰
补偿导线线间短路找出短路点,加强绝缘或更换补偿导线
热电偶热电极变质在长度允许的发问下,剪去变质段重新焊接,或更换新热电偶
补偿导线与热电偶极性接反重新接正确
补偿导线与热电偶不配套更换相配套的补偿导线
热电偶安装位置不录或插入深度不符合要求重新按规定安装
热电偶冷端温度补偿不符合要求调整冷端补偿器
热电偶与显示仪表不配套更换热电偶或显示仪表使之相配套
热电势比实际值大(显示仪表指示值偏高)显示仪表与热电偶不配套更换热电偶使之相配套
热电偶与补偿导线不配套更换补偿导线使之相配套
有直流干扰信号进入排除直流干扰
热电势输出不稳定热电偶接线柱与热电极接触不良将接线柱螺丝拧紧
热电偶测量线路绝缘破损,引起断续短路或接地找出故障点,修复绝缘
热电偶安装不牢或外部震动紧固热电偶,消除震动或采取减震措施
热电极将断未断修复或更换热电偶
外界干扰(交流漏电,电磁场感应等)查出干扰源,采用屏蔽措施
热电偶热电势误差大热电极变质更换热电极
热电偶安装位置不当改变安装位置
保护管表面积灰清除积灰

14温度补偿

编辑

热电偶(图12)热电偶(图12)由于热电偶的材料一般都比较贵重(特别是采用贵金属时),而测温点到仪表的距离都很远,为了节省热电偶材料,降低成本,通常采用补偿导线把热电偶的冷端(自由端)延伸到温度比较稳定的控制室内,连接到仪表端子上。必须指出,热电偶补偿导线的作用只起延伸热电极,使热电偶的冷端移动到控制室的仪表端子上,它本身并不能消除冷端温度变化对测温的影响,不起补偿作用。因此,还需采用其他修正方法来补偿冷端温度t0≠0℃时对测温的影响。在使用热电偶补偿导线时必须注意型号相配,极性不能接错,补偿导线与热电偶连接端的温度差不能过100℃。

15主要优点

编辑

1、测量精度高。因直接与被测对象接触,不受中间介质的影响。

2、测量范围广。常用的热电偶从零下50度——1600度均可连续测量,某些特殊热电偶低可测到-269度(如金铁镍铬),可达2800度(如钨、铼)。

3、构造简单,使用方便。热电偶通常是由两种不同的金属丝组成,而且不受大小和开头的限制,外有保护套管,用起来非常方便。

16选择方法

编辑

热电偶(图13)热电偶(图13)热电偶是两种不同的导体连接在一起形成的,当测量及参考连接点分别处于不同温度上时即产生出所谓的热电磁力(EMF)。连接点用途测量连接点是处于被测温度上的热电偶连接点部分。参考连接点则是保持在一已知温度上,或温度变化能自动补偿的热电偶连接点部分。

在常规工业应用中,热电偶元件一般端接在接头上;但参考连接点却很少位于接头上,而是利用适当的热电偶延伸线来转接到温度比较稳定的被控环境中。连接点类型接壳式热电偶连接点与探针壁物理连接(焊接),这能实现很好的热传输——即从外部通过探针壁将热量传至热电偶连接点。建议用接壳式热电偶来测量静态或流动腐蚀性气体与液体的温度,以及一些高压应用。在绝缘式热电偶中,热电偶连接点与探针壁分开并由一种软性粉末包围。虽然绝缘式热电偶的响应速度比接壳式热电偶的响应速度要慢,但它能提供电绝缘。建议使用绝缘式热电偶来测量腐蚀性环境,可理想地通过护套屏蔽来将热电偶与周围环境*电绝缘。露端式热电偶允许连接点顶端深入到周围环境中,这种类型可提供的响应时间,但*于在非腐蚀、非危险及非加压应用中使用。响应时间以时间常数来表示,时间常数定义为传感器在被控环境中在初始值和终值之间改变63.2%所需的时间。露端式热电偶具有快的响应速度,而且探针护套直径越小,则响应速度就越快,但其大允许测量温度也就越低。延伸线热电偶延伸线是一对具有与其相连热电偶相同温度电磁频率特征的线。当连接合适时,延伸线将参考连接点从热电偶转接至线的另一端,而这一端通常位于被控环境中。

选择热电偶选择热电偶时需考虑下列因素:

1、被测温度范围;

2、所需响应时间;

3、连接点类型;

4、热电偶或护套材料的抗化学腐蚀能力;

5、抗磨损或抗振动能力;

6、安装及限制要求等。

在工业生产过程中,温度是需要测量和控制的重要参数之一。在温度测量中,热电偶的应用极为广泛,它具有结构简单、制造方便、测量范围广、精度高、惯性小和输出信号便于远传等许多优点。另外,由于热电偶是一种有源传感器,测量时不需外加电源,使用十分方便,所以常被用作测量炉子、管道内的气体或液体的温度及固体的表面温度[1]

2工作原理

编辑

当有两种不同的导体或半导体A和B组成一个回路,其两端相互连接时,只要两结点处的温度不同,一端温度为T,称为工作端或热端,另一端温度为T0 ,称为自由端(也称参考端)或冷端,回路中将产生一个电动势,该电动势的方向和大小与导体的材料及两接点的温度有关。这种现象称为“热电效应”,两种导体组成的回路称为“热电偶”,这两种导体称为“热电极”,产生的电动势则称为“热电动势”[1]

热电动势由两部分电动势组成,一部分是两种导体的接触电动势,另一部分是单一导体的温差电动势。

LSYUC3KY-FP LSYUCX-FP LSYUC5KQ-FP LSYUC6B LSYUC9ADD LSYVB1A LSYVB2B
LSYVB3K LSYVB4L LSYVC1A LSYVC3KP-FP LSYVC3KQ-FP LSYVC3KY-FP LSYVC7L
LSYWB1A LSYWB3K LSYWB3KQ-FP LSYWC1A LSYWC1ADD LSYWC1F LSYWC3KP-FP
LSYWC3KY-FP LSYWC5KQ-FP LSYWC6B LSYWC7L LSZ51 LSZ51A LSZ51B LSZ51B-C
LSZ51C LSZ51CA LSZ51D LSZ51D-C LSZ51F LSZ51G LSZ51J LSZ51L LSZ51M LSZ51N
LSZ51P LSZ51R LSZ51T LSZ51U LSZ51W LSZ51Y LSZ52 LSZ52A LSZ52B LSZ52C
LSZ52D LSZ52E LSZ52J LSZ52K LSZ52L LSZ52M LSZ52N LSZ52R LSZ52W LSZ52Y
LSZ53 LSZ53A LSZ53B LSZ53D LSZ53E LSZ53M LSZ53P LSZ53S LSZ53U LSZ53W
LSZ54 LSZ54M LSZ54N LSZ54NA LSZ54N-C LSZ54P LSZ54R LSZ54SM LSZ54T 
LSZ54V LSZ54W LSZ55 LSZ55A LSZ55B LSZ55C LSZ55D LSZ55E LSZ55F LSZ55K
LSZ55W LSZ55Y LSZ56 LSZ56A LSZ56B LSZ56C LSZ56D LSZ56E LSZ56J LSZ56K
LSZ56L LSZ56M LSZ56N LSZ581B LSZ59 LSZ59A LSZ59AC LSZ59B LSZ59C LSZ59D
LSZ59L LSZ60A LSZ60B LSZ61 LSZ616 LSZ617 LSZ618 LSZ65AA LSZ65AB LSZ65AF
LSZ65BA LSZ65CA LSZ65CB LSZ65CD LSZ65DA LSZ65DB LSZ65DC LSZ65DD 
LSZ65EA LSZ65EB LSZ65ED LSZ65EE LSZ65FA LSZ65FB LSZ65FD LSZ65FF LSZ65GA
LSZ65GB LSZ65HA LSZ65HB LSZ65HC LSZ65HD LSZ65HE LSZ65JA LSZ65JB LSZ65JD
LSZ65JE LSZ65JF LSZ65KA LSZ65KB LSZ65LA LSZ65LB LSZ67AA LSZ68 LSZ686
LSZ69CA LSZ69DA LSZ6HXC
德国皮尔磁PILZ主要产品有:PNOZ X系列安全继电器、PNOZsigma紧凑型安全继电器、PNOZmulti模块化安全继电器、PNOZelog固态安全继电器、PSENmag非接触式磁性安全开关、PSENmech机械式安全开关、PSENcode非接触编码型安全开关、PSENbolt安全门闩、PSENopt安全光幕/光栅、PSENhinge安全铰链开关、PSENrope安全拉线开关、PITestop紧急停止按钮、PITsign屏蔽指示灯。

750108 PNOZ s8 24VDC 2 n/o
750101 PNOZ s1 24VDC 2 n/o
751101 PNOZ s1 C 24VDC 2 n/o
773500 PNOZ mo1p 4 so
773630 PNOZ po3.1p 8n/o
773700 PNOZ mc1p
PILZ安全继电器 773000 PNOZmulti Configurator Software + Manual
PILZ安全继电器 774000 PNOZ 10 24VAC 6n/o 4n/c
PILZ安全继电器 774001 PNOZ 10 42VAC 6n/o 4n/c
PILZ安全继电器 774002 PNOZ 10 48VAC 6n/o 4n/c
PILZ安全继电器 774003 PNOZ 10 110-120VAC 6n/o 4n/c
PILZ安全继电器 774006 PNOZ 10 230-240VAC 6n/o 4n/c
PILZ安全继电器 774009 PNOZ 10 24VDC 6n/o 4n/c
PILZ安全继电器 774012 PNOZ 2VJ 24VDC 3n/o 1n/c 2n/o t
PILZ安全继电器 774013 PNOZ 2VQ 24VDC 3n/o 1n/c 2n/o t
PILZ安全继电器 774049 PNOZ X7 48VAC 2n/o
PILZ安全继电器 774050 PNOZ 15 24VDC 3n/o 1n/o 1n/c
PILZ安全继电器 774051 PNOZ X7.1 24VAC/DC 1n/o 1n/c
PILZ安全继电器 774053 PNOZ X7 110VAC 2n/o
PILZ安全继电器 774054 
PILZ安全继电器 774055 
PILZ安全继电器 774056 PNOZ X7 
PILZ安全继电器 774057 PNOZ X7 
PILZ安全继电器 774058 PNOZ X7 
PILZ安全继电器 774059 PNOZ X7 
PILZ安全继电器 774080 PNOZ 11
PILZ安全继电器 774081 PNOZ 11
PILZ安全继电器 774082 PNOZ 11
PILZ安全继电器 774085 PNOZ 11 
PILZ安全继电器 774086 PNOZ 11 
PILZ安全继电器 774100 PNOZ 
PILZ安全继电器 774104 PNOZ EX 115VAC 3n/o 1n/c
PILZ安全继电器 774105 PNOZ EX 120VAC 3n/o 1n/c
PILZ安全继电器 774106 PNOZ EX 115VAC 3n/o 1n/c FM/USA
PILZ安全继电器 774107 PNOZ EX 120VAC 3n/o 1n/c FM/USA
PILZ安全继电器 774108 PNOZ EX 230VAC 3n/o 1n/c FM/USA
PILZ安全继电器 774300 PNOZ X1 24VAC/DC 3n/o 1n/c
PILZ安全继电器 774303 PNOZ X2 24VAC/DC 2n/o
PILZ安全继电器 774304 PNOZ X2C 24VAC/DC 2n/o
PILZ安全继电器 774305 PNOZ X2.1C 24VAC/DC 2n/o
PILZ安全继电器 774306 PNOZ X2.1 24VAC/DC 2n/o
PILZ安全继电器 774309 PNOZ X3.2 230VAC 24VDC 3n/o 1n/c 1so
PILZ安全继电器 774310 PNOZ X3 24VAC 24VDC 3n/o 1n/c 1so
PILZ安全继电器 774311 PNOZ X3 42VAC 24VDC 3n/o 1n/c 1so
PILZ安全继电器 774312 PNOZ X3 48VAC 24VDC 3n/o 1n/c 1so
PILZ安全继电器 774314 PNOZ X3 110VAC 24VDC 3n/o 1n/c 1so
PILZ安全继电器 774315 PNOZ X3 115VAC 24VDC 3n/o 1n/c 1so
PILZ安全继电器 774316 PNOZ X3 120VAC 24VDC 3n/o 1n/c 1so
PILZ安全继电器 774318 PNOZ X3 230VAC 24VDC 3n/o 1n/c 1so
PILZ安全继电器 774319 PNOZ X3 240VAC 24VDC 3n/o 1n/c 1so
PILZ安全继电器 774321 PNOZ X3.1 230VAC 24VDC 3n/o 1n/c 1so
PILZ安全继电器 774322 PNOZ X3.1 240VAC 24VDC 3n/o 1n/c 1so
PILZ安全继电器 774323 PNOZ X5J 24VDC 2n/o无锡
PILZ安全继电器 774324 PNOZ X5.1 24VDC 2n/o
PILZ安全继电器 774325 PNOZ X5 24VACDC 2n/o
PILZ安全继电器 774326 PNOZ X5 12VDC 2n/o
PILZ安全继电器 774549 PNOZ X13 24VDC 5n/o 1n/c
PILZ安全继电器 774560 PNOZ XHCV 0,7/24VDC 2n/o fix
PILZ安全继电器 774601 PNOZ X9 42VAC 24VDC 7n/o 2n/c 2so
PILZ安全继电器 774605 PNOZ X9 100-120VAC 24VDC 7n/o 2n/c 2so
PILZ安全继电器 774606 PNOZ X9 200-230VAC 24VDC 7n/o 2n/c 2so
PILZ安全继电器 774607 PNOZ X2.2 24VAC/DC 2n/o
PILZ安全继电器 774608 PNOZ X9 200VAC 24VDC -774606
PILZ安全继电器 774609 PNOZ X9 24VAC 24VDC 7n/o 2 n/c 2so
PILZ安全继电器 774700 PNOZ X10 24VAC 6n/o 4n/c 3LED
PILZ安全继电器 774701 PNOZ X10 42VAC 6n/o 4n/c 3LED
PILZ安全继电器 774703 PNOZ X10 110-120VAC 6n/o 4n/c 3LED
PILZ安全继电器 774706 PNOZ X10 230-240VAC 6n/o 4n/c 3LED
PILZ安全继电器 774709 PNOZ X10 24VDC 6n/o 4n/c 3LED
PILZ安全继电器 774721 PNOZ X6 42VAC 3n/o
PILZ安全继电器 774725 PNOZ X6 110-120VAC 3n/o
PILZ安全继电器 774726 PNOZ X6 230-240VAC 3n/o
PILZ安全继电器 774729 PNOZ X6 24VAC 24VDC 3n/o
PILZ安全继电器 774730 PNOZ X4 24VDC 3n/o 1n/c
PILZ安全继电器 774731 PNOZ X4 24VAC 3n/o 1n/c
PILZ安全继电器 774734 PNOZ X4 110VAC 3n/o 1n/c
PILZ安全继电器 774735 PNOZ X4 115VAC 3n/o 1n/c
PILZ安全继电器 774736 PNOZ X4 120VAC 3n/o 1n/c
PILZ安全继电器 774738 PNOZ X4 230VAC 3n/o 1n/c
PILZ安全继电器 774739 PNOZ X4 240VAC 3n/o 1n/c
PILZ安全继电器 774740 PNOZ X10.1 24 VAC 6n/o 4n/c 6LED
PILZ安全继电器 774741 PNOZ X10.1 42 VAC 6n/o 4n/c 6LED
PILZ安全继电器 774745 PNOZ X10.1 110-120VAC 6n/o 4n/c 6LED
PILZ安全继电器 774746 PNOZ X10.1 230-240VAC 6n/o 4n/c 6LED
PILZ安全继电器 774749 PNOZ X10.1 24VDC 6n/o 4n/c 6LED
PILZ安全继电器 774760 PNOZ 8 24VDC 3n/o 1n/c 2so
PILZ安全继电器 774764 PNOZ 8 110VAC 3n/o 1n/c 2so
PILZ安全继电器 774768 PNOZ 8 230VAC 3n/o 1n/c 2so
PILZ安全继电器 774789 PNOZ V 3s 24VDC 3n/o 1n/c 1n/o t
PILZ安全继电器 774790 PNOZ V 30s 24VDC 3n/o 1n/c 1n/o t
PILZ安全继电器 774791 PNOZ V 300s 24VDC 3n/o 1n/c 1n/o t
PILZ安全继电器 775600 PNOZ 1 24VAC 3n/o 1n/c
PILZ安全继电器 775620 PNOZ 1 48VAC 3n/o 1n/c
PILZ安全继电器 775630 PNOZ 1 110-120VAC 3n/o 1n/c
PILZ安全继电器 775650 PNOZ 1 230-240VAC 3n/o 1n/c
PILZ安全继电器 775695 PNOZ 1 24VDC 3n/o 1n/c
PILZ安全继电器 775800 PNOZ 2 24VAC 3n/o 1n/c
PILZ安全继电器 775810 PNOZ 2 42VAC 3n/o 1n/c
PILZ安全继电器 775830 PNOZ 2 110VAC 3n/o 1n/c
PILZ安全继电器 775850 PNOZ 2 230VAC 3n/o 1n/c
PILZ安全继电器 777053 PNOZ X7P 110-120VAC 2n/o
PILZ安全继电器 777056 PNOZ X7P 230-240VAC 2n/o
PILZ安全继电器 777059 PNOZ X7P 24VAC/DC 2n/o
PILZ安全继电器 777080 PNOZ X11P 24VAC 24VDC 7n/o 1n/c 2so
PILZ安全继电器 777083 PNOZ X11P 110-120VAC 24VDC 7n/o 1n/c 2so
PILZ安全继电器 777086 PNOZ X11P 230-240VAC 24VDC 7n/o 1n/c 2so
PILZ安全继电器 777100 PNOZ X1P 24VDC 3n/o 1n/c
PILZ安全继电器 777300 PNOZ X2.9P 24VDC 3n/o 1n/c
PILZ安全继电器 777301 PNOZ X2.8P 24VACDC 3n/o 1n/c
PILZ安全继电器 777302 PNOZ X2.8P 24-240VAC/DC 3n/o 1n/c
PILZ安全继电器 777303 PNOZ X2P 24VACDC 2n/o
PILZ安全继电器 777304 PNOZ X2.3P 24VACDC 3n/o
PILZ安全继电器 777305 PNOZ X2.7P 24VACDC 3n/o 1n/c
PILZ安全继电器 777306 PNOZ X2.7P 24-240VAC/DC 3n/o 1n/c
PILZ安全继电器 777307 PNOZ X2P 48-240VACDC 2n/o
PILZ安全继电器 777308 PNOZ X2.5P 24VDC 2n/o 1so
PILZ安全继电器 777310 PNOZ X3P 24VDC 24VAC 3n/o 1n/c 1so
PILZ安全继电器 777313 PNOZ X3P 24-240VACDC 3n/o 1n/c 1so
PILZ安全继电器 777314 PNOZ X3.10P 24VACDC 3n/o 1n/c 1so
PILZ安全继电器 777606 PNOZ X9P 24DC 24-240VACDC 7no 2nc 2so
PILZ安全继电器 777607 PNOZ X9P 12VDC 7n/o 2n/c 2so
PILZ安全继电器 777609 PNOZ X9P 24VDC 7n/o 2n/c 2so
PILZ安全继电器 777750 PNOZ X10.11P 24VDC 6n/o 4n/c 6LED
PILZ安全继电器 777760 PNOZ X8P 24 VDC 3n/o 2n/c 2so
PILZ安全继电器 777764 PNOZ X8P 110VAC 3n/o 2n/c 2so
PILZ安全继电器 777765 PNOZ X8P 115VAC 3n/o 2n/c 2so
PILZ安全继电器 777766 PNOZ X8P 120VAC 3n/o 2n/c 2so
PILZ安全继电器 777768 PNOZ X8P 230VAC 3n/o 2n/c 2so
PILZ安全继电器 777770 PNOZ X8P 24VAC 3n/o 2n/c 2so
PILZ安全继电器 787053 PNOZ X7P C 110-120VAC 2n/o
PILZ安全继电器 787056 PNOZ X7P C 230-240VAC 2n/o
PILZ安全继电器 787059 PNOZ X7P C 24VAC/DC 2n/o
PILZ安全继电器 787080 PNOZ X11P C 24VAC 24VDC 7n/o 1n/c 2so
PILZ安全继电器 787083 PNOZ X11P C 110-120VAC 7n/o 1n/c 2so
PILZ安全继电器 787086 PNOZ X11P C 230-240VAC 7n/o 1n/c 2so
PILZ安全继电器 787100 PNOZ X1P C 24VDC 3n/o 1n/c
PILZ安全继电器 787300 PNOZ X2.9P C 24VDC 3n/o 1n/c
PILZ安全继电器 787301 PNOZ X2.8P C 24VACDC 3n/o 1n/c
PILZ安全继电器 787302 PNOZ X2.8P C 24-240VAC/DC 3n/o 1n/c
PILZ安全继电器 787303 PNOZ X2P C 24VACDC 2n/o
PILZ安全继电器 787304 PNOZ X2.3P C 24VACDC 3n/o
PILZ安全继电器 787305 PNOZ X2.7P C 24VACDC 3n/o 1n/c
PILZ安全继电器 787306 PNOZ X2.7P C 24-240VAC/DC 3n/o 1n/c
PILZ安全继电器 787307 PNOZ X2P C 48-240VACDC 2n/o
PILZ安全继电器 787308 PNOZ X2.5P C 24VDC 2n/o 1so
PILZ安全继电器 787310 PNOZ X3P C 24VDC 24VAC 3n/o 1n/c 1so
PILZ安全继电器 787313 PNOZ X3P C 24-240VACDC 3n/o 1n/c 1so
PILZ安全继电器 787314 PNOZ X3.10P C 24VACDC 3n/o 1n/c 1so
PILZ安全继电器 787606 PNOZ X9P C 24DC 24-240VACDC 7no 2nc 2so
PILZ安全继电器 787609 PNOZ X9P C 24VDC 7n/o 2n/c 2so
PILZ安全继电器 787750 PNOZ X10.11P C 24VDC 6n/o 4n/c 6LED
PILZ安全继电器 787760 PNOZ X8P C 24 VDC 3n/o 2n/c 2so
PILZ安全继电器 787764 PNOZ X8P C 110VAC 3n/o 2n/c 2so
PILZ安全继电器 787765 PNOZ X8P C 115VAC 3n/o 2n/c 2so
PILZ安全继电器 787766 PNOZ X8P C 120VAC 3n/o 2n/c 2so
PILZ安全继电器 787768 PNOZ X8P C 230VAC 3n/o 2n/c 2so
PILZ安全继电器 787770 PNOZ X8P C 24VAC 3n/o 2n/c 2so
PILZ安全继电器 774060 PNOZ 16 24VAC 24VDC 2n/o
PILZ安全继电器 774061 PNOZ 16 42VAC 24VDC 2n/o
PILZ安全继电器 774062 PNOZ 16 48VAC 24VDC 2n/o无锡德为源
PILZ安全继电器 774063 PNOZ 16 110VAC 24VDC 2n/o
PILZ安全继电器 774064 PNOZ 16 115VAC 24VDC 2n/o
PILZ安全继电器 774065 PNOZ 16 120VAC 24VDC 2n/o
PILZ安全继电器 774066 PNOZ 16 230VAC 24VDC 2n/o
PILZ安全继电器 774067 PNOZ 16 240VAC 24VDC 2n/o
PILZ安全继电器 774070 PNOZ 16S 24VAC 24VDC 2n/o 2so
PILZ安全继电器 774071 PNOZ 16S 42VAC 24VDC 2n/o 2so
PILZ安全继电器 774072 PNOZ 16S 48VAC 24VDC 2n/o 2so
PILZ安全继电器 774073 PNOZ 16S 110VAC 24VDC 2n/o 2so
PILZ安全继电器 774074 PNOZ 16S 115VAC 24VDC 2n/o 2so
PILZ安全继电器 774075 PNOZ 16S 120VAC 24VDC 2n/o 2so
PILZ安全继电器 774076 PNOZ 16S 230VAC 24VDC 2n/o 2so
PILZ安全继电器 774077 PNOZ 16S 240VAC 24VDC 2n/o 2so
PILZ安全继电器 777070 PNOZ 16SP 24VAC 24VDC 2n/o
PILZ安全继电器 777071 PNOZ 16SP 42VAC 24VDC 2n/o
PILZ安全继电器 777072 PNOZ 16SP 48VAC 24VDC 2n/o
PILZ安全继电器 777073 PNOZ 16SP 110VAC 24VDC 2n/o
PILZ安全继电器 777074 PNOZ 16SP 115VAC 24VDC 2n/o
PILZ安全继电器 777075 PNOZ 16SP 120VAC 24VDC 2n/o
PILZ安全继电器 777076 PNOZ 16SP 230VAC 24VDC 2n/o
PILZ安全继电器 777077 PNOZ 16SP 240VAC 24VDC 2n/o
PILZ安全继电器 787070 PNOZ 16SP C 24VAC 24VDC 2n/o
PILZ安全继电器 787071 PNOZ 16SP C 42VAC 24VDC 2n/o
PILZ安全继电器 787072 PNOZ 16SP C 48VAC 24VDC 2n/o
PILZ安全继电器 787073 PNOZ 16SP C 110VAC 24VDC 2n/o
PILZ安全继电器 787074 PNOZ 16SP C 115VAC 24VDC 2n/o
PILZ安全继电器 787075 PNOZ 16SP C 120VAC 24VDC 2n/o
PILZ安全继电器 787076 PNOZ 16SP C 230VAC 24VDC 2n/o
PILZ安全继电器 787077 PNOZ 16SP C 240VAC 24VDC 2n/o
PILZ安全继电器 374280 PNOZ X Set plug in screw terminals P1+P2
PILZ安全继电器 374281 PNOZ X Set plug in screw terminals P3+P4
PILZ安全继电器 374282 PNOZ X Set plug in screw terminals P5+P5
PILZ安全继电器 374290 PNOZ X Set spring loaded terminals P1+P2
PILZ安全继电器 374291 PNOZ X Set spring loaded terminals P3+P4
PILZ安全继电器 374292 PNOZ X Set spring loaded terminals P5+P5
PILZ安全继电器 774500 PNOZ XV2 30/24VDC 2n/o 2n/o t
PILZ安全继电器 774502 PNOZ XV2 3/24VDC 2n/o 2n/o t
PILZ安全继电器 774504 PNOZ XV2 0.5/24VDC 2n/o 2n/o fix
PILZ安全继电器 774505 PNOZ XV2 3/24VDC 2n/o 2n/o fix
PILZ安全继电器 774506 PNOZ XV2 10/24VDC 2n/o 2n/o fix
PILZ安全继电器 774508 PNOZ XV2 300/24VDC 2n/o 2n/o t
PILZ安全继电器 774517 PNOZ X2.4V 1/24VDC 4n/o 1so fix
PILZ安全继电器 774530 PNOZ XV3.1 30/24VDC 3n/o 1n/c 2n/o t
PILZ安全继电器 774532 PNOZ XV3.1 3/24VDC 3n/o 1n/c 2n/o t
PILZ安全继电器 774534 PNOZ XV3.1 0.5/24VDC 3n/o 1n/c 2n/o fix
PILZ安全继电器 774538 PNOZ XV3.1 300/24VDC 3n/o 1n/c 2n/o t
PILZ安全继电器 774540 PNOZ XV3 30/24VDC 3n/o 2n/o t
PILZ安全继电器 774541 PNOZ XV3 300/24VAC 3n/o 2n/o t
PILZ安全继电器 774542 PNOZ XV3 3/24VDC 3n/o 2n/o t
PILZ安全继电器 774544 PNOZ XV3 0.5/24VDC 3n/o 2n/o t fix
PILZ安全继电器 774545 PNOZ XV3 3/24VDC 3n/o 2n/o t fix
PILZ安全继电器 774547 PNOZ XV3 10/24VDC 3n/o 2n/o t fix
PILZ安全继电器 774548 PNOZ XV3 300/24VDC 3n/o 2n/o t
PILZ安全继电器 774550 PNOZ XV2.1 30/24-240VACDC 2n/o 2n/o t
PILZ安全继电器 774552 PNOZ XV2.1 3/24-240VACDC 2n/o 2n/o t
PILZ安全继电器 774554 PNOZ XV2.1 0.5/24-240VACDC 2n/o 2n/o fix
PILZ安全继电器 774558 PNOZ XV2.1 300/24-240VACDC 2n/o 2n/o t
PILZ安全继电器 774610 PNOZ XV3.1 30/24-240VACDC 3nc 2no t
PILZ安全继电器 774612 PNOZ XV3.1 3/24-240VACDC 3nc 2no t
PILZ安全继电器 774618 PNOZ XV3.1 300/24-240VACDC 3nc 2no t
PILZ安全继电器 777500 PNOZ XV2P 30/24VDC 2n/o 2n/o t
PILZ安全继电器 777502 PNOZ XV2P 3/24VDC 2n/o 2n/o t
PILZ安全继电器 777503 PNOZ XV2P 1/24VDC 2n/o 2n/o fix
PILZ安全继电器 777504 PNOZ XV2P 0.5/24VDC 2n/o 2n/o fix
PILZ安全继电器 777510 PNOZ XV3P 30/24 VDC 3n/o 2n/o t
PILZ安全继电器 777511 PNOZ XV3.3P 30/24VDC 3n/o 2n/o t
PILZ安全继电器 777512 PNOZ XV3P 3/24 VDC 3n/o 2n/o t
PILZ安全继电器 777514 PNOZ XV3P 0.5/24VDC 3n/o 2n/o t fix
PILZ安全继电器 777515 PNOZ XV3P 3/24VDC 3n/o 2n/o t fix
PILZ安全继电器 777517 PNOZ XV3P 10/24VDC 3n/o 2n/o t fix
PILZ安全继电器 777518 PNOZ XV3P 300/24VDC 3n/o 2n/o t
PILZ安全继电器 777520 PNOZ XV3.1P 30/24VDC 3n/o 1n/c 2n/o t
PILZ安全继电器 777522 PNOZ XV3.1P 3/24VDC 3n/o 1n/c 2n/o t
PILZ安全继电器 777525 PNOZ XV3.1P 3/24VDC 3n/o 1n/c 2n/o t fix
PILZ安全继电器 777530 PNOZ XV3.1P 30/24-240VACDC 3nc 2no t
PILZ安全继电器 777532 PNOZ XV3.1P 3/24-240VACDC 3nc 2no t
PILZ安全继电器 777538 PNOZ XV3.1P 300/24-240VACDC 3nc 2no
PILZ安全继电器 777540 PNOZ XV2.1P 30/24-240VACDC 2n/o 2n/o t
PILZ安全继电器 777542 PNOZ XV2.1P 3/24-240VACDC 2n/o 2n/o t
PILZ安全继电器 777544 PNOZ XV2.1P 0.5/24-240VACDC 2n/o 2n/o fi
PILZ安全继电器 777545 PNOZ XV2.1P 3/24-240VACDC 2n/o 2n/o fix
PILZ安全继电器 777547 PNOZ XV2.1P 10/24-240VACDC 2n/o 2n/o fix
PILZ安全继电器 777548 PNOZ XV2.1P 300/24-240VACDC 2n/o 2n/o t
PILZ安全继电器 777600 PNOZ X2.1VP 0.75/24VDC 1so 2n/o fix
PILZ安全继电器 777601 PNOZ XV1P 3/24VDC 2n/o 1n/o t
PILZ安全继电器 777602 PNOZ XV1P 30/24VDC 2n/o 1n/o t
PILZ安全继电器 787500 PNOZ XV2P C 30/24VDC 2n/o 2n/o t
PILZ安全继电器 787502 PNOZ XV2P C 3/24VDC 2n/o 2n/o t
PILZ安全继电器 787503 PNOZ XV2P C 1/24VDC 2n/o 2n/o fix
PILZ安全继电器 787504 PNOZ XV2P C 0.5/24VDC 2n/o 2n/o fix
PILZ安全继电器 787510 PNOZ XV3P C 30/24 VDC 3n/o 2n/o t
PILZ安全继电器 787511 PNOZ XV3.3P C 30/24VDC 3n/o 2n/o t
PILZ安全继电器 787512 PNOZ XV3P C 3/24 VDC 3n/o 2n/o t
PILZ安全继电器 787518 PNOZ XV3P C 300/24VDC 3n/o 2n/o t
PILZ安全继电器 787520 PNOZ XV3.1P C 30/24VDC 3n/o 1n/c 2n/o t
PILZ安全继电器 787522 PNOZ XV3.1P C 3/24VDC 3n/o 1n/c 2n/o t
PILZ安全继电器 787530 PNOZ XV3.1P C 30/24-240VACDC 3nc 2no
PILZ安全继电器 787532 PNOZ XV3.1P C 3/24-240VACDC 3nc 2no
PILZ安全继电器 787538 PNOZ XV3.1P C300/24-240VACDC 3nc 2no
PILZ安全继电器 787540 PNOZ XV2.1P C 30/24-240VACDC 2n/o 2n/o t
PILZ安全继电器 787542 PNOZ XV2.1P C 3/24-240VACDC 2n/o 2n/o t
PILZ安全继电器 787548 PNOZ XV2.1P C 300/24-240VACDC 2n/o 2n/o
PILZ安全继电器 787600 PNOZ X2.1VP C 0.75/24VDC 1so 2n/o fix
PILZ安全继电器 787601 PNOZ XV1P C 3/24VDC 2n/o 1n/o t
PILZ安全继电器 787602 PNOZ XV1P C 30/24VDC 2n/o 1n/o t
PILZ安全继电器 774135 PNOZ e2.2p 24VDC 2so无锡德为源PILZ安全继电器 774136 PNOZ e2.1p 24VDC 2so
PILZ安全继电器 784135 PNOZ e2.2p C 24VDC 2so
PILZ安全继电器 784136 PNOZ e2.1p C 24VDC 2so
PILZ安全继电器 774130 PNOZ e1p 24VDC 2so
PILZ安全继电器 774131 PNOZ e1vp 10/24VDC 1so 1so t
PILZ安全继电器 774132 PNOZ e1vp 300/24VDC 1so 1so t
PILZ安全继电器 774133 PNOZ e1.1p 24VDC 2so
PILZ安全继电器 774137 PNOZ e3vp 10/24VDC 1so 1so t
PILZ安全继电器 774138 PNOZ e3vp 300/24VDC 1so 1so t
PILZ安全继电器 774139 PNOZ e3.1p 24VDC 2so
PILZ安全继电器 774190 PNOZ e5.11p 24VDC 2so
PILZ安全继电器 774191 PNOZ e5.13p 24VDC 2so
PILZ安全继电器 774192 PNOZ e6.1p 24VDC 4n/o 2so
PILZ安全继电器 774193 PNOZ e6vp 24VDC 4n/o 1so 1so t
PILZ安全继电器 774197 PNOZ e7p 24VDC 2 so
PILZ安全继电器 774198 PNOZ e8.1p 24VDC 2so
PILZ安全继电器 784130 PNOZ e1p C 24VDC 2so
PILZ安全继电器 784131 PNOZ e1vp C 10/24VDC 1so 1so t
PILZ安全继电器 784132 PNOZ e1vp C 300/24VDC 1so 1so t
PILZ安全继电器 784133 PNOZ e1.1p C 24VDC 2so
PILZ安全继电器 784137 PNOZ e3vp C 10/24VDC 1so 1so t
PILZ安全继电器 784138 PNOZ e3vp C 300/24VDC 1so 1so t
PILZ安全继电器 784139 PNOZ e3.1p C 24VDC 2so
PILZ安全继电器 784190 PNOZ e5.11p C 24VDC 2so
PILZ安全继电器 784191 PNOZ e5.13p C 24VDC 2so
PILZ安全继电器 784192 PNOZ e6.1p C 24VDC 4n/o 2so
PILZ安全继电器 784193 PNOZ e6vp C 24VDC 4n/o 1so 1so t
PILZ安全继电器 784197 PNOZ e7p C 24VDC 2 so
PILZ安全继电器 784198 PNOZ e8.1p C 24VDC 2so
PILZ安全继电器 774180 PNOZ e4.1p 24VDC 2so
PILZ安全继电器 774181 PNOZ e4vp 10/24VDC 1so 1so t
PILZ安全继电器 784180 PNOZ e4.1p C 24VDC 2so
PILZ安全继电器 784181 PNOZ e4vp C 10/24VDC 1so 1so t
PILZ安全继电器 874130B PNOZelog Driver CD
PILZ安全继电器 773410 PNOZ mi2p 8 standard input
PILZ安全继电器 773700 PNOZ mc1p
PILZ安全继电器 773705 PNOZ mc1p coated version
PILZ安全继电器 773711 PNOZ mcp DeviceNet 2
PILZ安全继电器 773712 PNOZ mc6p CANopen 2
PILZ安全继电器 773713 PNOZ mc2.1p EtherCAT 2
PILZ安全继电器 773715 PNOZ mc10p SERCOS III
PILZ安全继电器 773716 PNOZ mc7p CC-Link 2
PILZ安全继电器 773719 PNOZ mc12p Powerlink
PILZ安全继电器 773720 PNOZ mc0p Powersupply
PILZ安全继电器 773723 PNOZ mc5p INTERBUS
PILZ安全继电器 773725 PNOZ mc7p CC-Link coated version
PILZ安全继电器 773726 PNOZ mc7p CC-Link
PILZ安全继电器 773727 PNOZ mc6p CANopen coated version
PILZ安全继电器 773728 PNOZ mc5.1p Interbus LWL / Fiberoptic
PILZ安全继电器 773729 PNOZ mcp DeviceNet coated version
PILZ安全继电器 773730 PNOZ mc8p Ethernet IP / Modbus TCP
PILZ安全继电器 773731 PNOZ mc9p Profinet IO
PILZ安全继电器 773732 PNOZ mc3p Profibus 2
PILZ安全继电器 773733 PNOZ mc6.1p CANopen 3
PILZ安全继电器 773734 PNOZ mc8p coated version
PILZ安全继电器 779000 PNOZmulti Tool-Kit
PILZ安全继电器 772800 PNOZmulti Mini accessory package
PILZ安全继电器 773839 PNOZ msi1Bp Adapter Si/Ha 25/25 5m
PILZ安全继电器 773840 PNOZ msi1Ap Adapter Si/Ha 25/25 2,5m
PILZ安全继电器 773841 PNOZ msi1Bp Adapter Si/Ha 25/25 2,5m
PILZ安全继电器 773842 PNOZ msi3Ap Adapter Si/Ha 15/15 2,5m
PILZ安全继电器 773843 PNOZ msi3Bp Adapter Si/Ha 15/15 2,5m
PILZ安全继电器 773844 PNOZ msi1AP Adapter Si/Ha 25/25 5m
PILZ安全继电器 773845 PNOZ msi b4 Box
PILZ安全继电器 773846 PNOZ MSI19P ADAPTER ELAU PACDrive3 1,5m
PILZ安全继电器 773847 PNOZ MSI19P ADAPTER ELAU PACDrive3 2,5m
PILZ安全继电器 773854 PNOZ msi10p adapter cable 2,5m
PILZ安全继电器 773855 PNOZ msi11p adapter cable 1,5m
PILZ安全继电器 773856 PNOZ msi 9p adapter cable 5m
PILZ安全继电器 773857 PNOZ msi5p Adapter Bos/Rex 15/15 2,5m
PILZ安全继电器 773858 PNOZ msi5p Adapter Bosc/Rex 15/15 1,5m
PILZ安全继电器 773859 PNOZ msi6p Adapter Elau 9/9 7,5m
PILZ安全继电器 773860 PNOZ msi6p Adapter Elau 9/9 2,5m
PILZ安全继电器 773861 PNOZ msi6p Adapter Elau 9/9 1,5m
PILZ安全继电器 773862 PNOZ msi8p Adapter Lenze 9/9 2,5m
PILZ安全继电器 773863 PNOZ msi8p Adapter Lenze 9/9 1,5m
PILZ安全继电器 773864 PNOZ msi7p Adapter SEW 15/15 2,5m
PILZ安全继电器 773865 PNOZ msi7p Adapter SEW 15/15 1,5m
PILZ安全继电器 773867 PNOZ msi16p ADAPTER Baumuell 15/15 2,5m
PILZ安全继电器 773868 PNOZ msi12p Rockwell 15/15 2,5m
PILZ安全继电器 773869 PNOZ msi13p Fanuc 20/20 2,5m
PILZ安全继电器 773870 PNOZ msi S09
PILZ安全继电器 773871 PNOZ msi S15
PILZ安全继电器 773872 PNOZ msi S25
PILZ安全继电器 773873 PNOZ MSI6P ADAPTER ELAU 9/9 4 m
PILZ安全继电器 773874 PNOZ msi15p Adapter Tendo 15/15 2,5m
PILZ安全继电器 773875 PNOZ msi17p Bos/Rex 15/15 5,0m
PILZ安全继电器 773878 PNOZ msi14p Leroy 15/15 2,5m
PILZ安全继电器 773879 PNOZ MSI20P PARKER HD 15/15 2,5M
PILZ安全继电器 773880 PNOZ msi b1 Box 15p
PILZ安全继电器 773881 PNOZ msi b0 cable 15/RJ45
PILZ安全继电器 773882 PNOZ msi b1 Box 9p
PILZ安全继电器 773883 PNOZ msi b1 Box 25p
PILZ安全继电器 773884 PNOZ msi b0 cable 25/RJ45
PILZ安全继电器 773890 PNOZ mli1p 5m screw
PILZ安全继电器 773891 PNOZ mli1p 10m screw
PILZ安全继电器 773892 PNOZ mli1p 50m screw
PILZ安全继电器 773893 PNOZ mli1p 5m spring
PILZ安全继电器 773894 PNOZ mli1p 10m spring
PILZ安全继电器 773895 PNOZ mli1p 50m spring
PILZ安全继电器 773896 PNOZ mli1p 1,5m spring
PILZ安全继电器 773897 PNOZ mli1p 1,5m screw无锡德为源
PILZ安全继电器 779110 PNOZmulti Bus-Terminator
PILZ安全继电器 779126 PNOZmulti accessory package
PILZ安全继电器 779200 PNOZmulti Chipcard Set 10 pieces 8kB
PILZ安全继电器 779201 PNOZmulti Chipcard 1 piece 8kB
PILZ安全继电器 779211 PNOZmulti Chipcard 1 piece 32kB
PILZ安全继电器 779212 PNOZmulti Chipcard Set 10 pieces 32kB
PILZ安全继电器 779230 PNOZmulti Chip Card Reader mit USB
PILZ安全继电器 779250 PNOZmulti Seal 12 pieces
PILZ安全继电器 779260 PNOZ mm0.xp connector left (10 pcs)
PILZ安全继电器 779261 PNOZ mm0.xp terminator left (10 pcs.)
PILZ安全继电器 783100 Set spring terminals PNOZ m0p/m1p/m2p
PILZ安全继电器 783520 Set spring terminals PNOZ mo2p
PILZ安全继电器 783536 Set spring terminals PNOZ mo4p/mo5p
PILZ安全继电器 783538 Spring terminals PNOZ mmc2p, mml1p 1 pc.
PILZ安全继电器 783539 Spring terminals PNOZ mmc2p,mml1p 10 pcs
PILZ安全继电器 783540 Spring terminals PNOZ mml2p
PILZ安全继电器 783541 Spring terminals PNOZ mml2p 10 pcs.
PILZ安全继电器 783542 Spring terminals PNOZ mmcxp, 1 pc.
PILZ安全继电器 783543 Spring terminals PNOZ mmcxp, 10 pcs.
PILZ安全继电器 783700 Set spring terminals PNOZ mc1p/ma1p
PILZ安全继电器 783800 Set spring terminals PNOZms1p/ms2p
PILZ安全继电器 783801 PNOZms1p 10 Set spring loaded terminals
PILZ安全继电器 793100 Set screw terminals, PNOZ m0p/m1p/m2p
PILZ安全继电器 793520 Set screw terminals PNOZ mo2p
PILZ安全继电器 793536 Set screw terminals PNOZ mo4p/mo5p
PILZ安全继电器 793538 Screw terminals PNOZ mmc2p, mml1p 1 pc.
PILZ安全继电器 793539 Screw terminals PNOZ mmc2p,mml1p 10 pcs.
PILZ安全继电器 793540 Screw terminals PNOZ mml2p
PILZ安全继电器 793541 Screw terminals PNOZ mml2p 10 pcs.
PILZ安全继电器 793542 Screw terminals PNOZ mmcxp, 1 pc.
PILZ安全继电器 793543 Screw terminals PNOZ mmcxp, 10 pcs.
PILZ安全继电器 793700 Set screw terminals PNOZ mc1p/ma1p
PILZ安全继电器 793800 Set screw terminals PNOZms1p/ms2p
PILZ安全继电器 793801 PNOZms1p 10 Set plug in screw terminals
PILZ安全继电器 773100 PNOZ m1p base unit
PILZ安全继电器 773103 PNOZ m1p ETH
PILZ安全继电器 773104 PNOZ m1p ETH coated version
PILZ安全继电器 773105 PNOZ m1p base unit coated version
PILZ安全继电器 773113 PNOZ m0p ETH
PILZ安全继电器 773120 PNOZ m2p base unit press function
PILZ安全继电器 773123 PNOZ m2p ETH
PILZ安全继电器 773125 PNOZ m3p base unit burner function
PILZ安全继电器 773126 PNOZ m3p ETH
PILZ安全继电器 773400 PNOZ mi1p 8 input
PILZ安全继电器 773405 PNOZ mi1p 8 input coated version
PILZ安全继电器 773500 PNOZ mo1p 4 so
PILZ安全继电器 773505 PNOZ mo1p 4so coated version
PILZ安全继电器 773510 PNOZ mo3p 2so
PILZ安全继电器 773520 PNOZ mo2p 2n/o
PILZ安全继电器 773525 PNOZ mo2p 2n/o coated version
PILZ安全继电器 773534 PNOZ mo5p 4 n/o burner
PILZ安全继电器 773536 PNOZ mo4p 4n/o
PILZ安全继电器 773537 PNOZ mo4p 4n/o coated version
PILZ安全继电器 773540 PNOZ ml1p safe link
PILZ安全继电器 773545 PNOZ ml1p coated version
PILZ安全继电器 773602 PNOZ ml2p safe link PDP
PILZ安全继电器 773800 PNOZ ms1p standstill / speed monitor
PILZ安全继电器 773810 PNOZ ms2p standstill / speed monitor
PILZ安全继电器 773811 PNOZ ms2p TTL coated version
PILZ安全继电器 773812 PNOZ ma1p 2 Analog Input
PILZ安全继电器 773813 PNOZ ma1p coated version
PILZ安全继电器 773815 PNOZ ms2p HTL
PILZ安全继电器 773816 PNOZ ms2p TTL
PILZ安全继电器 773820 PNOZ ms3p standstill / speed monitor
PILZ安全继电器 773825 PNOZ ms3p HTL
PILZ安全继电器 773826 PNOZ ms3p TTL
PILZ安全继电器 773830 PNOZ ms4p standstill/speed monitor
PILZ安全继电器 774600 PNOZ XM1 24VDC 4n/o 1n/c 2so
PILZ安全继电器 774620 PNOZ XE1 24VDC
PILZ安全继电器 774621 PNOZ XE2 24VDC
PILZ安全继电器 773300 PNOZ p1p 24VDC 2so
PILZ安全继电器 773950 PNOZ p1vp 30s
PILZ安全继电器 773951 PNOZ p1vp 300s无锡德为源

热电偶回路中热电动势的大小,只与组成热电偶的导体材料和两接点的温度有关,而与热电偶的形状尺寸无关。当热电偶两电极材料固定后,热电动势便是两接点温度t和t0。的函数差[1]。即

公式公式

这一关系式在实际测温中得到了广泛应用。因为冷端t0恒定,热电偶产生的热电动势只随热端(测量端)温度的变化而变化,即一定的热电动势对应着一定的温度。我们只要用测量热电动势的方法就可达到测温的目的[1]

热电偶(图1)热电偶(图1)热电偶热电偶热电偶测温的基本原理是两种不同成份的材质导体组成闭合回路,当两端存在温度梯度时,回路中就会有电流通过,此时两端之间就存在电动势——热电动势,这就是所谓的塞贝克效应(Seebeck effect)。两种不同成份的均质导体为热电极,温度较高的一端为工作端,温度较低的一端为自由端,自由端通常处于某个恒定的温度下。根据热电动势与温度的函数关系,制成热电偶分度表;分度表是自由端温度在0℃时的条件下得到的,不同的热电偶具有不同的分度表。

在热电偶回路中接入第三种金属材料时,只要该材料两个接点的温度相同,热电偶所产生的热电势将保持不变,即不受第三种金属接入回路中的影响。因此,在热电偶测温时,可接入测量仪表,测得热电动势后,即可知道被测介质的温度。热电偶测量温度时要求其冷端(测量端为热端,通过引线与测量电路连接的端称为冷端)的温度保持不变,其热电势大小才与测量温度呈一定的比例关系。若测量时,冷端的(环境)温度变化,将严重影响测量的准确性。在冷端采取一定措施补偿由于冷端温度变化造成的影响称为热电偶的冷端补偿正常。与测量仪表连接用补偿导线。

热电偶冷端补偿计算方法:

从毫伏到温度:测量冷端温度,换算为对应毫伏值,与热电偶的毫伏值相加,换算出温度;

从温度到毫伏:测量出实际温度与冷端温度,分别换算为毫伏值,相减後得出毫伏值,即得温度。

3测温条件

编辑

热电偶高清图片热电偶高清图片是一种感温元件,是一种一次仪表,热电偶直接丈量温度。由2种不同成分材质的导体组成的闭合回路,由于材质不同,不同的电子密度产生电子扩散,稳定均衡后就产生 了电势。当两端存在梯度温度时,回路中就会有,产生热电动势,温度差越大,电流就会越大。测得热电动势之后即可晓得温度值。热电偶实际上是一种能量转换器,可将热能转换成电能。

热电偶的技术优势:热电偶测温范围宽,性能比拟稳定;丈量精度高,热电偶与被测对象直接接触,不受中间介质的影响;热响应时间快,热电偶对温度变化反响灵活;丈量范围 大,热电偶从-40~+ 1600℃ 均可连续测温;热电偶性能牢靠, 机械强度好。运用寿命长,装置便当。

电偶必需是由两种性质不同但契合一定要求的导体(或半导体)材料构成回路。热电偶丈量端和参考端之间必需有温差。

将两种不同资料的导体或半导体A和B焊接起来,构成一个闭合回路。当导体A和B的两个执着点1和2之间存在温差时,两者之间便产生电动势,因此在回路中构成一个大小的电流,这 种现象称为热电效应。热电偶就是应用这一效应来工作的。

4主要特点

编辑

热电偶(图2)热电偶(图2)1、装配简单,更换方便;

2、压簧式感温元件,抗震性能好;

3、测量精度高;

4、测量范围大(-200℃~1300℃,特殊情况下-270℃~2800℃);

5、热响应时间快;

6、机械强度高,耐压性能好;

7、耐高温可达2800度;

8、使用寿命长。

5结构要求

编辑

热电偶(图3)热电偶(图3)热电偶的结构形式为了保证热电偶可靠、稳定地工作,对它的结构要求如下:

1、组成热电偶的两个热电极的焊接必须牢固;

2、两个热电极彼此之间应很好地绝缘,以防短路;

3、补偿导线与热电偶自由端的连接要方便可靠;

4、保护套管应能保证热电极与有害介质充分隔离。

6工作原理

编辑

热电偶(图4)热电偶(图4)两种不同成份的导体(称为热电偶丝材或热电极)两端接合成回路,当两个接合点的温度不同时,在回路中就会产生电动势,这种现象称为热电效应,而这种电动势称为热电势。热电偶就是利用这种原理进行温度测量的,其中,直接用作测量介质温度的一端叫做工作端(也称为测量端),另一端叫做冷端(也称为补偿端);冷端与显示仪表或配套仪表连接,显示仪表会指出热电偶所产生的热电势。

热电偶实际上是一种能量转换器,它将热能转换为电能,用所产生的热电势测量温度,对于热电偶的热电势,应注意如下几个问题:

1、热电偶的热电势是热电偶工作端的两端温度函数的差,而不是热电偶冷端与工作端,两端温度差的函数;

2、热电偶所产生的热电势的大小,当热电偶的材料是均匀时,与热电偶的长度和直径无关,只与热电偶材料的成份和两端的温差有关;

3、当热电偶的两个热电偶丝材料成份确定后,热电偶热电势的大小,只与热电偶的温度差有关;若热电偶冷端的温度保持一定,这进热电偶的热电势仅是工作端温度的单值函数。将两种不同材料的导体或半导体A和B焊接起来,构成一个闭合回路,如图所示。当导体A和B的两个执着点1和2之间存在温差时,两者之间便产生电动势,因而在回路中形成一个大小的电流。热电偶就是利用这一效应来工作的。

7常见种类

编辑

常用热电偶可分为标准热电偶和非标准热电偶两大类。所谓标准热电偶是指国家标准规定了其热电势与温度的关系、允许误差、并有统一的标准分度表的热电偶,它有与其配套的显示仪表可供选用。非标准化热电偶在使用范围或数量级上均不及标准化热电偶,一般也没有统一的分度表,主要用于某些特殊场合的测量。标准化热电偶中国从1988年1月1日起,热电偶和热电阻全部按IEC标准生产,并S、B、E、K、R、J、T七种标准化热电偶为中国统一设计型热电偶。

热电偶分度号热电极材料
 正极负极
S铂铑 10纯铂
R铂铑 13纯铂
B铂铑 30铂铑 6
K镍铬镍硅
T纯铜铜镍
J铜镍
N镍铬硅镍硅
E镍铬铜镍

从理论上讲,任何两种不同导体(或半导体)都可以配制成热电偶,但是作为实用的测温元件,对它的要求是多方面的。为了保证工程技术中的可靠性,以及足够的测量精度,并不是所有材料都能组成热电偶,一般对热电偶的电极材料,基本要求是:

1、在测温范围内,热电性质稳定,不随时间而变化,有足够的物理化学稳定性,不易氧化或腐蚀;

2、电阻温度系数小,导电率高,比热小;

3、测温中产生热电势要大,并且热电势与温度之间呈线性或接近线性的单值函数关系;

4、材料复制性好,机械强度高,制造工艺简单,价格便宜。

8安装方法

编辑

在生产中由于被测对象不同,环境条件不同,测量要求不同,和热电阻的安装方法及采取的措施也不同,需要考虑的问题比较多,但原则上可以从测温的准确性、安全性、维修方便三个方面来考虑。

为避免测温元件损坏,应保证其有足够的机械强度,为保护感温元件不受磨损应加保护屏或保护管等,为确保安全、可靠,测温元件的安装方法应视具体情况(如待测介质的温度、压力、测温元件的长度及其安装位置、形式等)而定。下面仅举几例以引起注意:

凡安装承受压力的测温元件,都必须保证其密封性。高温下工作的热电偶,为防止保护管在高温下产生变形,一般应垂直安装,若必须水平安装则不宜过长,并用支架保护热电偶。若测温元件安装于介质流速较大的管道中,则其应倾斜安装。为防止测温元件受到过大的冲蚀,安装在管道的弯曲处。当介质压力过10MPa时,必须在测量元件上加保护外套。热电偶/热电阻的安装部位还应考虑其拆装、维修、校验的足够空间和场地,具有较长保护管的热电偶、热电阻应能方便地拆装。

9测量方法

编辑

的热响应时间比较复杂,不同的试验条件会有不同的测量结果,这是因为它受热电偶与周围介质的换热率影响,换热率高,则热响应时间就短。为了使热电偶产品的热响应 时间具有可比性,国家标准规定:热响应时间应在水流试验装置上进行。该装置的水流速度应保持0.4±0.05m/s,初始温度在5-45℃的范围内,温度阶跃值为40-50℃。在试验 过程中,水的温度变化应不大于温度阶跃值的±1%。被试热电偶的置入深度为150mm或设计的置入深度(选其中较小值并在试验报告中注明)。

由于该装置比较复杂,目前只有极少数单位有这套设备,故国家标准中规定允许生产厂与用户协商,可采用其他试验方法,但所给数据必须注明试验条件。

由于B型热电偶在室温附近热电势很小,热响应时间不容易测出,因此国家标准规定可采用同规格的S型热电偶的热电极组件替换其自身的热电极组件,然后进行试验。

试验时应记录 热电偶 的输出变化至相当于温度阶跃变化50%的时间T0.5,必要时可记录变化10%的热响应时间T0.1和变化90%的热响应时间T0.9。所记录的热响应时间,应是同一 试验至少三次测试结果的平均值,每次测量结果对于平均值的偏离应在±10%以内。此外,形成温度阶跃变化所需的时间不应过被测试 热电偶 的T0.5的十分之一。记录仪器或仪 表的响应时间不应过被试热电偶的T0.5的十分之一。

10主要分类

编辑

热电偶(图5)热电偶(图5)1、按固定装置型式分类

热电偶作为主要测温手段,用途十分广泛,因而对固定装置和技术性能有多种要求,因此热电偶的固定装置分为六种:无固定装置式、螺纹式、固定法兰式、活动法兰式、活动法兰角尺形式、锥形保护管式六种。

2、按装配及结构方式分类

根据热电偶的性能结构方式可分为:可拆卸式热电偶、隔爆式热电偶、铠装热电偶和压弹簧固定式热电偶等特殊用途的热电偶。

11安装要求

编辑

热电偶(图6)热电偶(图6)对热电偶与热电阻的安装,应注意有利于测温准确,安全可考及维修方便,而且不影响设备运行和生产操作.要满足以上要求,在选择对热电偶和热电阻的安装部位和插入深度时要注意以下几点:

1、为了使热电偶和热电阻的测量端与被测介质之间有充分的热交换,应合理选择测点位置,尽量避免在阀门,弯头及管道和设备的死角附近装设热电偶或热电阻。

2、带有保护套管的热电偶和热电阻有传热和散热损失,为了减少测量误差,热电偶和热电阻应该有足够的插入深度:

热电偶(图7)热电偶(图7)(1)对于测量管道中心流体温度的热电偶,一般都应将其测量端插入到管道中心处(垂直安装或倾斜安装).如被测流体的管道直径是200毫米,那热电偶或热电阻插入深度应选择100毫米;

(2)对于高温高压和高速流体的温度测量(如主蒸汽温度),为了减小保护套对流体的阻力和防止保护套在流体作用下发生断裂,可采取保护管浅插方式或采用热套式热电偶,浅插式的热电偶保护套管,其插入主蒸汽管道的深度应不小于75mm;热套式热电偶的标准插入深度为100mm;

(3)假如需要测量是烟道内烟气的温度,尽管烟道直径为4m,热电偶或热电阻插入深度1 m即可;

(4)当测量原件插入深度过1m时,应尽可能垂直安装,或加装支撑架和保护套管。

12正确使用

编辑

热电偶(图8)热电偶(图8)正确使用热电偶不但可以准确得到温度的数值,保证产品合格,而且还可节省热电偶的材料消耗,既节省资金又能保证产品质量。安装不正确,热导率和时间滞后等误差,它们是热电偶在使用中的主要误差。

1、安装不当引入的误差

如热电偶安装的位置及插入深度不能反映炉膛的真实温度等,换句话说,热电偶不应装在太靠近门和加热的地方,插入的深度至少应为保护管直径的8~10倍;热电偶的保护套管与壁间的间隔未填绝热物质致使炉内热溢出或冷空气侵入,因此热电偶保护管和炉壁孔之间的空隙应用耐火泥或石棉绳等绝热物质堵塞以免冷热空气对流而影响测温的准确性;热电偶冷端太靠近炉体使温度过100℃;热电偶的安装应尽可能避开强磁场和强电场,所以不应把热电偶和动力电缆线装在同一根导管内以免引入干扰造成误差;热电偶不能安装在被测介质很少流动的区域内,当用热电偶测量管内气体温度时,必须使热电偶逆着流速方向安装,而且充分与气体接触。

2、绝缘变差而引入的误差

如热电偶绝缘了,保护管和拉线板污垢或盐渣过多致使热电偶极间与炉壁间绝缘不良,在高温下更为严重,这不仅会引起热电势的损耗而且还会引入干扰,由此引起的误差有时可达上百度。

3、热惰性引入的误差

热电偶(图9)热电偶(图9)由于热电偶的热惰性使仪表的指示值落后于被测温度的变化,在进行快速测量时这种影响尤为突出。所以应尽可能采用热电极较细、保护管直径较小的热电偶。测温环境许可时,甚至可将保护管取去。由于存在测量滞后,用热电偶检测出的温度波动的振幅较炉温波动的振幅小。测量滞后越大,热电偶波动的振幅就越小,与实际炉温的差别也就越大。当用时间常数大的热电偶测温或控温时,仪表显示的温度虽然波动很小,但实际炉温的波动可能很大。为了准确的测量温度,应当选择时间常数小的热电偶。时间常数与传热系数成反比,与热电偶热端的直径、材料的密度及比热成正比,如要减小时间常数,除增加传热系数以外,有效的办法是尽量减小热端的尺寸。使用中,通常采用导热性能好的材料,管壁薄、内径小的保护套管。在较精密的温度测量中,使用无保护套管的裸丝热电偶,但热电偶容易损坏,应及时校正及更换。

4、热阻误差

高温时,如保护管上有一层煤灰,尘埃附在上面,则热阻增加,阻碍热的传导,这时温度示值比被测温度的真值低。因此,应保持热电偶保护管外部的清洁,以减小误差。

13故障处理

编辑

热电偶输入产生故障判别法:

热电偶(图10)热电偶(图10)按照仪表接线图进行正确接线通电后,仪表先是显示仪表的热电偶分度号,接着显示仪表量程范围,再测仪表下排的数码管显示设定温度,仪表上排数码管显示测量温度。若仪表上排数码管显示不是发热体的温度,而显示“OVER”、“0000”或“000”等状况,说明仪表输入部位产生故障,应作如下试验:

1)把热电偶从仪表热电偶输入端拆下,再用任何一根导线把仪表热电偶输入端短路。通电时,仪表上排数码管显示值约为室温时,说明热电偶内部连线开路,应更换同类型热电偶。若还是以上所说的状况,说明仪表在运输过程中,仪表的输入端被损坏,要调换仪表。

2)把上述故障仪表的热电偶拆去,换用旁边运行正常的同种分度号仪表上接入的热电偶,通电后,原故障仪表上排数码管显示发热体温度时,说明热电偶连线开路,更换同类型热电偶。

热电偶(图11)热电偶(图11)3)把有故障的热电偶从仪表上拆下来,用万用表放在测量欧姆(R)*1档,用万用表两表棒去测热电偶两端,若万用表上显示的电阻值很大,说明热电偶内部连接开路,更换同类型热电偶。否则有一定阻值,说明仪表输入端有问题,应更换仪表。

4)按照仪表接线图接线正确,若仪表通电后,仪表上排数码管显示有负值等现象,说明接入仪表的热电偶“+”与“—”接错而造成的。只要重新调换一下即可。

5)接线正确仪表在运行时,仪表上排数码管显示的温度与实际测量的温度相差40度~70度。甚至相差更大,说明仪表的分度号与热电偶的分度号搞错。按热电偶分度号B、S、K、E等热电偶的温度与毫伏(MV)值的对应关系来看,同样温度的情况下,产生的毫伏值(MV)B分度号小,S分度号次小,K分度号较大,E分度号大,按照此原理来判别。

常见故障分析及处理:

故障现象可能原因处理方法
热电势比实际值小(显示仪表指示值偏低)热电极短路如潮湿所致,则进行干燥;如绝缘子损坏,则更换绝缘子
热电偶的接线柱处积灰,造成短路清扫积灰
补偿导线线间短路找出短路点,加强绝缘或更换补偿导线
热电偶热电极变质在长度允许的发问下,剪去变质段重新焊接,或更换新热电偶
补偿导线与热电偶极性接反重新接正确
补偿导线与热电偶不配套更换相配套的补偿导线
热电偶安装位置不录或插入深度不符合要求重新按规定安装
热电偶冷端温度补偿不符合要求调整冷端补偿器
热电偶与显示仪表不配套更换热电偶或显示仪表使之相配套
热电势比实际值大(显示仪表指示值偏高)显示仪表与热电偶不配套更换热电偶使之相配套
热电偶与补偿导线不配套更换补偿导线使之相配套
有直流干扰信号进入排除直流干扰
热电势输出不稳定热电偶接线柱与热电极接触不良将接线柱螺丝拧紧
热电偶测量线路绝缘破损,引起断续短路或接地找出故障点,修复绝缘
热电偶安装不牢或外部震动紧固热电偶,消除震动或采取减震措施
热电极将断未断修复或更换热电偶
外界干扰(交流漏电,电磁场感应等)查出干扰源,采用屏蔽措施
热电偶热电势误差大热电极变质更换热电极
热电偶安装位置不当改变安装位置
保护管表面积灰清除积灰

14温度补偿

编辑

热电偶(图12)热电偶(图12)由于热电偶的材料一般都比较贵重(特别是采用贵金属时),而测温点到仪表的距离都很远,为了节省热电偶材料,降低成本,通常采用补偿导线把热电偶的冷端(自由端)延伸到温度比较稳定的控制室内,连接到仪表端子上。必须指出,热电偶补偿导线的作用只起延伸热电极,使热电偶的冷端移动到控制室的仪表端子上,它本身并不能消除冷端温度变化对测温的影响,不起补偿作用。因此,还需采用其他修正方法来补偿冷端温度t0≠0℃时对测温的影响。在使用热电偶补偿导线时必须注意型号相配,极性不能接错,补偿导线与热电偶连接端的温度差不能过100℃。

15主要优点

编辑

1、测量精度高。因直接与被测对象接触,不受中间介质的影响。

2、测量范围广。常用的热电偶从零下50度——1600度均可连续测量,某些特殊热电偶低可测到-269度(如金铁镍铬),可达2800度(如钨、铼)。

3、构造简单,使用方便。热电偶通常是由两种不同的金属丝组成,而且不受大小和开头的限制,外有保护套管,用起来非常方便。

16选择方法

编辑

热电偶(图13)热电偶(图13)热电偶是两种不同的导体连接在一起形成的,当测量及参考连接点分别处于不同温度上时即产生出所谓的热电磁力(EMF)。连接点用途测量连接点是处于被测温度上的热电偶连接点部分。参考连接点则是保持在一已知温度上,或温度变化能自动补偿的热电偶连接点部分。

在常规工业应用中,热电偶元件一般端接在接头上;但参考连接点却很少位于接头上,而是利用适当的热电偶延伸线来转接到温度比较稳定的被控环境中。连接点类型接壳式热电偶连接点与探针壁物理连接(焊接),这能实现很好的热传输——即从外部通过探针壁将热量传至热电偶连接点。建议用接壳式热电偶来测量静态或流动腐蚀性气体与液体的温度,以及一些高压应用。在绝缘式热电偶中,热电偶连接点与探针壁分开并由一种软性粉末包围。虽然绝缘式热电偶的响应速度比接壳式热电偶的响应速度要慢,但它能提供电绝缘。建议使用绝缘式热电偶来测量腐蚀性环境,可理想地通过护套屏蔽来将热电偶与周围环境*电绝缘。露端式热电偶允许连接点顶端深入到周围环境中,这种类型可提的响应时间,但*于在非腐蚀、非危险及非加压应用中使用。响应时间以时间常数来表示,时间常数定义为传感器在被控环境中在初始值和终值之间改变63.2%所需的时间。露端式热电偶具有快的响应速度,而且探针护套直径越小,则响应速度就越快,但其大允许测量温度也就越低。延伸线热电偶延伸线是一对具有与其相连热电偶相同温度电磁频率特征的线。当连接合适时,延伸线将参考连接点从热电偶转接至线的另一端,而这一端通常位于被控环境中。

选择热电偶选择热电偶时需考虑下列因素:

1、被测温度范围;

2、所需响应时间;

3、连接点类型;

4、热电偶或护套材料的抗化学腐蚀能力;

5、抗磨损或抗振动能力;

6、安装及限制要求等。

在工业生产过程中,温度是需要测量和控制的重要参数之一。在温度测量中,热电偶的应用极为广泛,它具有结构简单、制造方便、测量范围广、精度高、惯性小和输出信号便于远传等许多优点。另外,由于热电偶是一种有源传感器,测量时不需外加电源,使用十分方便,所以常被用作测量炉子、管道内的气体或液体的温度及固体的表面温度[1]

2工作原理

编辑

当有两种不同的导体或半导体A和B组成一个回路,其两端相互连接时,只要两结点处的温度不同,一端温度为T,称为工作端或热端,另一端温度为T0 ,称为自由端(也称参考端)或冷端,回路中将产生一个电动势,该电动势的方向和大小与导体的材料及两接点的温度有关。这种现象称为“热电效应”,两种导体组成的回路称为“热电偶”,这两种导体称为“热电极”,产生的电动势则称为“热电动势”[1]

热电动势由两部分电动势组成,一部分是两种导体的接触电动势,另一部分是单一导体的温差电动势。

热电偶回路中热电动势的大小,只与组成热电偶的导体材料和两接点的温度有关,而与热电偶的形状尺寸无关。当热电偶两电极材料固定后,热电动势便是两接点温度t和t0。的函数差[1]。即

公式公式

这一关系式在实际测温中得到了广泛应用。因为冷端t0恒定,热电偶产生的热电动势只随热端(测量端)温度的变化而变化,即一定的热电动势对应着一定的温度。我们只要用测量热电动势的方法就可达到测温的目的[1]

热电偶(图1)热电偶(图1)热电偶热电偶热电偶测温的基本原理是两种不同成份的材质导体组成闭合回路,当两端存在温度梯度时,回路中就会有电流通过,此时两端之间就存在电动势——热电动势,这就是所谓的塞贝克效应(Seebeck effect)。两种不同成份的均质导体为热电极,温度较高的一端为工作端,温度较低的一端为自由端,自由端通常处于某个恒定的温度下。根据热电动势与温度的函数关系,制成热电偶分度表;分度表是自由端温度在0℃时的条件下得到的,不同的热电偶具有不同的分度表。

在热电偶回路中接入第三种金属材料时,只要该材料两个接点的温度相同,热电偶所产生的热电势将保持不变,即不受第三种金属接入回路中的影响。因此,在热电偶测温时,可接入测量仪表,测得热电动势后,即可知道被测介质的温度。热电偶测量温度时要求其冷端(测量端为热端,通过引线与测量电路连接的端称为冷端)的温度保持不变,其热电势大小才与测量温度呈一定的比例关系。若测量时,冷端的(环境)温度变化,将严重影响测量的准确性。在冷端采取一定措施补偿由于冷端温度变化造成的影响称为热电偶的冷端补偿正常。与测量仪表连接用补偿导线。

热电偶冷端补偿计算方法:

从毫伏到温度:测量冷端温度,换算为对应毫伏值,与热电偶的毫伏值相加,换算出温度;

从温度到毫伏:测量出实际温度与冷端温度,分别换算为毫伏值,相减後得出毫伏值,即得温度。

3测温条件

编辑

热电偶高清图片热电偶高清图片是一种感温元件,是一种一次仪表,热电偶直接丈量温度。由2种不同成分材质的导体组成的闭合回路,由于材质不同,不同的电子密度产生电子扩散,稳定均衡后就产生 了电势。当两端存在梯度温度时,回路中就会有电,产生热电动势,温度差越大,电流就会越大。测得热电动势之后即可晓得温度值。热电偶实际上是一种能量转换器,可将热能转换成电能。

热电偶的技术优势:热电偶测温范围宽,性能比拟稳定;丈量精度高,热电偶与被测对象直接接触,不受中间介质的影响;热响应时间快,热电偶对温度变化反响灵活;丈量范围 大,热电偶从-40~+ 1600℃ 均可连续测温;热电偶性能牢靠, 机械强度好。运用寿命长,装置便当。

电偶必需是由两种性质不同但契合一定要求的导体(或半导体)材料构成回路。热电偶丈量端和参考端之间必需有温差。

将两种不同资料的导体或半导体A和B焊接起来,构成一个闭合回路。当导体A和B的两个执着点1和2之间存在温差时,两者之间便产生电动势,因此在回路中构成一个大小的电流,这 种现象称为热电效应。热电偶就是应用这一效应来工作的。

4主要特点

编辑

热电偶(图2)热电偶(图2)1、装配简单,更换方便;

2、压簧式感温元件,抗震性能好;

3、测量精度高;

4、测量范围大(-200℃~1300℃,特殊情况下-270℃~2800℃);

5、热响应时间快;

6、机械强度高,耐压性能好;

7、耐高温可达2800度;

8、使用寿命长。

5结构要求

编辑

热电偶(图3)热电偶(图3)热电偶的结构形式为了保证热电偶可靠、稳定地工作,对它的结构要求如下:

1、组成热电偶的两个热电极的焊接必须牢固;

2、两个热电极彼此之间应很好地绝缘,以防短路;

3、补偿导线与热电偶自由端的连接要方便可靠;

4、保护套管应能保证热电极与有害介质充分隔离。

6工作原理

编辑

热电偶(图4)热电偶(图4)两种不同成份的导体(称为热电偶丝材或热电极)两端接合成回路,当两个接合点的温度不同时,在回路中就会产生电动势,这种现象称为热电效应,而这种电动势称为热电势。热电偶就是利用这种原理进行温度测量的,其中,直接用作测量介质温度的一端叫做工作端(也称为测量端),另一端叫做冷端(也称为补偿端);冷端与显示仪表或配套仪表连接,显示仪表会指出热电偶所产生的热电势。

热电偶实际上是一种能量转换器,它将热能转换为电能,用所产生的热电势测量温度,对于热电偶的热电势,应注意如下几个问题:

1、热电偶的热电势是热电偶工作端的两端温度函数的差,而不是热电偶冷端与工作端,两端温度差的函数;

2、热电偶所产生的热电势的大小,当热电偶的材料是均匀时,与热电偶的长度和直径无关,只与热电偶材料的成份和两端的温差有关;

3、当热电偶的两个热电偶丝材料成份确定后,热电偶热电势的大小,只与热电偶的温度差有关;若热电偶冷端的温度保持一定,这进热电偶的热电势仅是工作端温度的单值函数。将两种不同材料的导体或半导体A和B焊接起来,构成一个闭合回路,如图所示。当导体A和B的两个执着点1和2之间存在温差时,两者之间便产生电动势,因而在回路中形成一个大小的电流。热电偶就是利用这一效应来工作的。

7常见种类

编辑

常用热电偶可分为标准热电偶和非标准热电偶两大类。所谓标准热电偶是指国家标准规定了其热电势与温度的关系、允许误差、并有统一的标准分度表的热电偶,它有与其配套的显示仪表可供选用。非标准化热电偶在使用范围或数量级上均不及标准化热电偶,一般也没有统一的分度表,主要用于某些特殊场合的测量。标准化热电偶中国从1988年1月1日起,热电偶和热电阻全部按IEC标准生产,并S、B、E、K、R、J、T七种标准化热电偶为中国统一设计型热电偶。

热电偶分度号热电极材料
 正极负极
S铂铑 10纯铂
R铂铑 13纯铂
B铂铑 30铂铑 6
K镍铬镍硅
T纯铜铜镍
J铜镍
N镍铬硅镍硅
E镍铬铜镍

从理论上讲,任何两种不同导体(或半导体)都可以配制成热电偶,但是作为实用的测温元件,对它的要求是多方面的。为了保证工程技术中的可靠性,以及足够的测量精度,并不是所有材料都能组成热电偶,一般对热电偶的电极材料,基本要求是:

1、在测温范围内,热电性质稳定,不随时间而变化,有足够的物理化学稳定性,不易氧化或腐蚀;

2、电阻温度系数小,导电率高,比热小;

3、测温中产生热电势要大,并且热电势与温度之间呈线性或接近线性的单值函数关系;

4、材料复制性好,机械强度高,制造工艺简单,价格便宜。

8安装方法

编辑

在生产中由于被测对象不同,环境条件不同,测量要求不同,和热电阻的安装方法及采取的措施也不同,需要考虑的问题比较多,但原则上可以从测温的准确性、安全性、维修方便三个方面来考虑。

为避免测温元件损坏,应保证其有足够的机械强度,为保护感温元件不受磨损应加保护屏或保护管等,为确保安全、可靠,测温元件的安装方法应视具体情况(如待测介质的温度、压力、测温元件的长度及其安装位置、形式等)而定。下面仅举几例以引起注意:

凡安装承受压力的测温元件,都必须保证其密封性。高温下工作的热电偶,为防止保护管在高温下产生变形,一般应垂直安装,若必须水平安装则不宜过长,并用支架保护热电偶。若测温元件安装于介质流速较大的管道中,则其应倾斜安装。为防止测温元件受到过大的冲蚀安装在管道的弯曲处。当介质压力过10MPa时,必须在测量元件上加保护外套。热电偶/热电阻的安装部位还应考虑其拆装、维修、校验的足够空间和场地,具有较长保护管的热电偶、热电阻应能方便地拆装。

9测量方法

编辑

的热响应时间比较复杂,不同的试验条件会有不同的测量结果,这是因为它受热电偶与周围介质的换热率影响,换热率高,则热响应时间就短。为了使热电偶产品的热响应 时间具有可比性,国家标准规定:热响应时间应在水流试验装置上进行。该装置的水流速度应保持0.4±0.05m/s,初始温度在5-45℃的范围内,温度阶跃值为40-50℃。在试验 过程中,水的温度变化应不大于温度阶跃值的±1%。被试热电偶的置入深度为150mm或设计的置入深度(选其中较小值并在试验报告中注明)。

由于该装置比较复杂,目前只有极少数单位有这套设备,故国家标准中规定允许生产厂与用户协商,可采用其他试验方法,但所给数据必须注明试验条件。

由于B型热电偶在室温附近热电势很小,热响应时间不容易测出,因此国家标准规定可采用同规格的S型热电偶的热电极组件替换其自身的热电极组件,然后进行试验。

试验时应记录 热电偶 的输出变化至相当于温度阶跃变化50%的时间T0.5,必要时可记录变化10%的热响应时间T0.1和变化90%的热响应时间T0.9。所记录的热响应时间,应是同一 试验至少三次测试结果的平均值,每次测量结果对于平均值的偏离应在±10%以内。此外,形成温度阶跃变化所需的时间不应过被测试 热电偶 的T0.5的十分之一。记录仪器或仪 表的响应时间不应过被试热电偶的T0.5的十分之一。

10主要分类

编辑

热电偶(图5)热电偶(图5)1、按固定装置型式分类

热电偶作为主要测温手段,用途十分广泛,因而对固定装置和技术性能有多种要求,因此热电偶的固定装置分为六种:无固定装置式、螺纹式、固定法兰式、活动法兰式、活动法兰角尺形式、锥形保护管式六种。

2、按装配及结构方式分类

根据热电偶的性能结构方式可分为:可拆卸式热电偶、隔爆式热电偶、铠装热电偶和压弹簧固定式热电偶等特殊用途的热电偶。

11安装要求

编辑

热电偶(图6)热电偶(图6)对热电偶与热电阻的安装,应注意有利于测温准确,安全可考及维修方便,而且不影响设备运行和生产操作.要满足以上要求,在选择对热电偶和热电阻的安装部位和插入深度时要注意以下几点:

1、为了使热电偶和热电阻的测量端与被测介质之间有充分的热交换,应合理选择测点位置,尽量避免在阀门,弯头及管道和设备的死角附近装设热电偶或热电阻。

2、带有保护套管的热电偶和热电阻有传热和散热损失,为了减少测量误差,热电偶和热电阻应该有足够的插入深度:

热电偶(图7)热电偶(图7)(1)对于测量管道中心流体温度的热电偶,一般都应将其测量端插入到管道中心处(垂直安装或倾斜安装).如被测流体的管道直径是200毫米,那热电偶或热电阻插入深度应选择100毫米;

(2)对于高温高压和高速流体的温度测量(如主蒸汽温度),为了减小保护套对流体的阻力和防止保护套在流体作用下发生断裂,可采取保护管浅插方式或采用热套式热电偶,浅插式的热电偶保护套管,其插入主蒸汽管道的深度应不小于75mm;热套式热电偶的标准插入深度为100mm;

(3)假如需要测量是烟道内烟气的温度,尽管烟道直径为4m,热电偶或热电阻插入深度1 m即可;

(4)当测量原件插入深度过1m时,应尽可能垂直安装,或加装支撑架和保护套管。

12正确使用

编辑

热电偶(图8)热电偶(图8)正确使用热电偶不但可以准确得到温度的数值,保证产品合格,而且还可节省热电偶的材料消耗,既节省资金又能保证产品质量。安装不正确,热导率和时间滞后等误差,它们是热电偶在使用中的主要误差。

1、安装不当引入的误差

如热电偶安装的位置及插入深度不能反映炉膛的真实温度等,换句话说,热电偶不应装在太靠近门和加热的地方,插入的深度至少应为保护管直径的8~10倍;热电偶的保护套管与壁间的间隔未填绝热物质致使炉内热溢出或冷空气侵入,因此热电偶保护管和炉壁孔之间的空隙应用耐火泥或石棉绳等绝热物质堵塞以免冷热空气对流而影响测温的准确性;热电偶冷端太靠近炉体使温度过100℃;热电偶的安装应尽可能避开强磁场和强电场,所以不应把热电偶和动力电缆线装在同一根导管内以免引入干扰造成误差;热电偶不能安装在被测介质很少流动的区域内,当用热电偶测量管内气体温度时,必须使热电偶逆着流速方向安装,而且充分与气体接触。

2、绝缘变差而引入的误差

如热电偶绝缘了,保护管和拉线板污垢或盐渣过多致使热电偶极间与炉壁间绝缘不良,在高温下更为严重,这不仅会引起热电势的损耗而且还会引入干扰,由此引起的误差有时可达上百度。

3、热惰性引入的误差

热电偶(图9)热电偶(图9)由于热电偶的热惰性使仪表的指示值落后于被测温度的变化,在进行快速测量时这种影响尤为突出。所以应尽可能采用热电极较细、保护管直径较小的热电偶。测温环境许可时,甚至可将保护管取去。由于存在测量滞后,用热电偶检测出的温度波动的振幅较炉温波动的振幅小。测量滞后越大,热电偶波动的振幅就越小,与实际炉温的差别也就越大。当用时间常数大的热电偶测温或控温时,仪表显示的温度虽然波动很小,但实际炉温的波动可能很大。为了准确的测量温度,应当选择时间常数小的热电偶。时间常数与传热系数成反比,与热电偶热端的直径、材料的密度及比热成正比,如要减小时间常数,除增加传热系数以外,有效的办法是尽量减小热端的尺寸。使用中,通常采用导热性能好的材料,管壁薄、内径小的保护套管。在较精密的温度测量中,使用无保护套管的裸丝热电偶,但热电偶容易损坏,应及时校正及更换。

4、热阻误差

高温时,如保护管上有一层煤灰,尘埃附在上面,则热阻增加,阻碍热的传导,这时温度示值比被测温度的真值低。因此,应保持热电偶保护管外部的清洁,以减小误差。

13故障处理

编辑

热电偶输入产生故障判别法:

热电偶(图10)热电偶(图10)按照仪表接线图进行正确接线通电后,仪表先是显示仪表的热电偶分度号,接着显示仪表量程范围,再测仪表下排的数码管显示设定温度,仪表上排数码管显示测量温度。若仪表上排数码管显示不是发热体的温度,而显示“OVER”、“0000”或“000”等状况,说明仪表输入部位产生故障,应作如下试验:

1)把热电偶从仪表热电偶输入端拆下,再用任何一根导线把仪表热电偶输入端短路。通电时,仪表上排数码管显示值约为室温时,说明热电偶内部连线开路,应更换同类型热电偶。若还是以上所说的状况,说明仪表在运输过程中,仪表的输入端被损坏,要调换仪表。

2)把上述故障仪表的热电偶拆去,换用旁边运行正常的同种分度号仪表上接入的热电偶,通电后,原故障仪表上排数码管显示发热体温度时,说明热电偶连线开路,更换同类型热电偶。

热电偶(图11)热电偶(图11)3)把有故障的热电偶从仪表上拆下来,用万用表放在测量欧姆(R)*1档,用万用表两表棒去测热电偶两端,若万用表上显示的电阻值很大,说明热电偶内部连接开路,更换同类型热电偶。否则有一定阻值,说明仪表输入端有问题,应更换仪表。

4)按照仪表接线图接线正确,若仪表通电后,仪表上排数码管显示有负值等现象,说明接入仪表的热电偶“+”与“—”接错而造成的。只要重新调换一下即可。

5)接线正确仪表在运行时,仪表上排数码管显示的温度与实际测量的温度相差40度~70度。甚至相差更大,说明仪表的分度号与热电偶的分度号搞错。按热电偶分度号B、S、K、E等热电偶的温度与毫伏(MV)值的对应关系来看,同样温度的情况下,产生的毫伏值(MV)B分度号小,S分度号次小,K分度号较大,E分度号大,按照此原理来判别。

常见故障分析及处理:

故障现象可能原因处理方法
热电势比实际值小(显示仪表指示值偏低)热电极短路如潮湿所致,则进行干燥;如绝缘子损坏,则更换绝缘子
热电偶的接线柱处积灰,造成短路清扫积灰
补偿导线线间短路找出短路点,加强绝缘或更换补偿导线
热电偶热电极变质在长度允许的发问下,剪去变质段重新焊接,或更换新热电偶
补偿导线与热电偶极性接反重新接正确
补偿导线与热电偶不配套更换相配套的补偿导线
热电偶安装位置不录或插入深度不符合要求重新按规定安装
热电偶冷端温度补偿不符合要求调整冷端补偿器
热电偶与显示仪表不配套更换热电偶或显示仪表使之相配套
热电势比实际值大(显示仪表指示值偏高)显示仪表与热电偶不配套更换热电偶使之相配套
热电偶与补偿导线不配套更换补偿导线使之相配套
有直流干扰信号进入排除直流干扰
热电势输出不稳定热电偶接线柱与热电极接触不良将接线柱螺丝拧紧
热电偶测量线路绝缘破损,引起断续短路或接地找出故障点,修复绝缘
热电偶安装不牢或外部震动紧固热电偶,消除震动或采取减震措施
热电极将断未断修复或更换热电偶
外界干扰(交流漏电,电磁场感应等)查出干扰源,采用屏蔽措施
热电偶热电势误差大热电极变质更换热电极
热电偶安装位置不当改变安装位置
保护管表面积灰清除积灰

14温度补偿

编辑

热电偶(图12)热电偶(图12)由于热电偶的材料一般都比较贵重(特别是采用贵金属时),而测温点到仪表的距离都很远,为了节省热电偶材料,降低成本,通常采用补偿导线把热电偶的冷端(自由端)延伸到温度比较稳定的控制室内,连接到仪表端子上。必须指出,热电偶补偿导线的作用只起延伸热电极,使热电偶的冷端移动到控制室的仪表端子上,它本身并不能消除冷端温度变化对测温的影响,不起补偿作用。因此,还需采用其他修正方法来补偿冷端温度t0≠0℃时对测温的影响。在使用热电偶补偿导线时必须注意型号相配,极性不能接错,补偿导线与热电偶连接端的温度差不能过100℃。

15主要优点

编辑

1、测量精度高。因直接与被测对象接触,不受中间介质的影响。

2、测量范围广。常用的热电偶从零下50度——1600度均可连续测量,某些特殊热电偶低可测到-269度(如金铁镍铬),可达2800度(如钨、铼)。

3、构造简单,使用方便。热电偶通常是由两种不同的金属丝组成,而且不受大小和开头的限制,外有保护套管,用起来非常方便。

16选择方法

编辑

热电偶(图13)热电偶(图13)热电偶是两种不同的导体连接在一起形成的,当测量及参考连接点分别处于不同温度上时即产生出所谓的热电磁力(EMF)。连接点用途测量连接点是处于被测温度上的热电偶连接点部分。参考连接点则是保持在一已知温度上,或温度变化能自动补偿的热电偶连接点部分。

在常规工业应用中,热电偶元件一般端接在接头上;但参考连接点却很少位于接头上,而是利用适当的热电偶延伸线来转接到温度比较稳定的被控环境中。连接点类型接壳式热电偶连接点与探针壁物理连接(焊接),这能实现很好的热传输——即从外部通过探针壁将热量传至热电偶连接点。建议用接壳式热电偶来测量静态或流动腐蚀性气体与液体的温度,以及一些高压应用。在绝缘式热电偶中,热电偶连接点与探针壁分开并由一种软性粉末包围。虽然绝缘式热电偶的响应速度比接壳式热电偶的响应速度要慢,但它能提供电绝缘。建议使用绝缘式热电偶来测量腐蚀性环境,可理想地通过护套屏蔽来将热电偶与周围环境*电绝缘。露端式热电偶允许连接点顶端深入到周围环境中,这种类型可提的响应时间,但*于在非腐蚀、非危险及非加压应用中使用。响应时间以时间常数来表示,时间常数定义为传感器在被控环境中在初始值和终值之间改变63.2%所需的时间。露端式热电偶具有快的响应速度,而且探针护套直径越小,则响应速度就越快,但其大允许测量温度也就越低。延伸线热电偶延伸线是一对具有与其相连热电偶相同温度电磁频率特征的线。当连接合适时,延伸线将参考连接点从热电偶转接至线的另一端,而这一端通常位于被控环境中。

选择热电偶选择热电偶时需考虑下列因素:

1、被测温度范围;

2、所需响应时间;

3、连接点类型;

4、热电偶或护套材料的抗化学腐蚀能力;

5、抗磨损或抗振动能力;

6、安装及限制要求等。

收藏该商铺

登录 后再收藏

提示

您的留言已提交成功!我们将在第一时间回复您~
二维码 意见反馈

扫一扫访问手机商铺
在线留言